2016-11-06 17:54:42 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# encoding: utf-8
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
|
|
|
import xlrd
|
|
|
|
from path import Path
|
|
|
|
|
|
|
|
|
|
|
|
notes_path = Path("./")
|
2016-11-08 08:06:06 +00:00
|
|
|
|
2017-03-07 05:32:44 +00:00
|
|
|
no_student_columns = ["Trimestre",
|
|
|
|
"Nom",
|
|
|
|
"Date",
|
|
|
|
"Exercice",
|
|
|
|
"Question",
|
|
|
|
"Competence",
|
|
|
|
"Domaine",
|
|
|
|
"Commentaire",
|
|
|
|
"Bareme",
|
|
|
|
"Niveau"]
|
2016-11-06 17:54:42 +00:00
|
|
|
|
2016-11-25 20:56:53 +00:00
|
|
|
pd.set_option("Precision",2)
|
|
|
|
|
2016-11-06 17:54:42 +00:00
|
|
|
def list_classes(path = notes_path):
|
|
|
|
"""
|
|
|
|
List classes available in notes_path
|
|
|
|
|
|
|
|
>>> list_classes()
|
2016-11-13 12:35:44 +00:00
|
|
|
[]
|
|
|
|
>>> p = Path("./samples/")
|
2016-11-06 17:54:42 +00:00
|
|
|
>>> list_classes(p)
|
2016-11-13 12:35:44 +00:00
|
|
|
['503', '312', '308']
|
|
|
|
>>> list_classes("./samples/")
|
|
|
|
['503', '312', '308']
|
2016-11-06 17:54:42 +00:00
|
|
|
"""
|
|
|
|
try:
|
|
|
|
return [n.namebase for n in path.files("*.xlsx")]
|
|
|
|
except AttributeError:
|
|
|
|
p = Path(path)
|
|
|
|
return [n.namebase for n in p.files("*.xlsx")]
|
|
|
|
|
|
|
|
def get_class_ws(classe, path = notes_path):
|
|
|
|
"""
|
|
|
|
From the name of a classe, returns pd.ExcelFile
|
|
|
|
"""
|
2016-11-08 08:06:06 +00:00
|
|
|
p = Path(path)
|
|
|
|
if classe in list_classes(p):
|
|
|
|
return pd.ExcelFile(p/classe+".xlsx")
|
2016-11-06 17:54:42 +00:00
|
|
|
else:
|
2016-11-08 08:06:06 +00:00
|
|
|
raise ValueError("This class is not disponible in {p}. You have to choose in {c}".format(p = p, c = list_classes(p)))
|
2016-11-06 17:54:42 +00:00
|
|
|
|
2017-03-07 05:32:44 +00:00
|
|
|
def extract_students(df, no_student_columns = no_student_columns):
|
2016-11-06 17:54:42 +00:00
|
|
|
""" Extract the list of students from df """
|
2017-03-07 05:32:44 +00:00
|
|
|
students = df.columns.difference(no_student_columns)
|
2016-11-06 17:54:42 +00:00
|
|
|
return students
|
|
|
|
|
2017-03-07 05:32:44 +00:00
|
|
|
def check_students(dfs, no_student_columns = no_student_columns):
|
2016-11-06 17:54:42 +00:00
|
|
|
""" Build students list """
|
|
|
|
dfs_students = [extract_students(df) for df in dfs]
|
|
|
|
|
|
|
|
if not are_equal(dfs_students):
|
2017-01-03 18:21:40 +00:00
|
|
|
raise ValueError("Not same list of students amoung worksheets")
|
2016-11-06 17:54:42 +00:00
|
|
|
|
|
|
|
return dfs_students[0]
|
|
|
|
|
|
|
|
def are_equal(elems):
|
|
|
|
""" Test if item of elems are equal
|
|
|
|
|
|
|
|
>>> L = [[1, 2, 3], [1, 3, 2], [1, 3, 2]]
|
|
|
|
>>> are_equal(L)
|
|
|
|
True
|
|
|
|
>>> L = [[0, 2, 3], [1, 3, 2], [1, 3, 2]]
|
|
|
|
>>> are_equal(L)
|
|
|
|
False
|
|
|
|
|
|
|
|
"""
|
|
|
|
first = sorted(elems[0])
|
|
|
|
others = [sorted(e) for e in elems[1:]]
|
|
|
|
diff = [e == first for e in others]
|
|
|
|
|
|
|
|
if False in diff:
|
|
|
|
return False
|
|
|
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
def flat_df_students(df, students):
|
|
|
|
""" Flat the ws for students """
|
|
|
|
flat_df = pd.DataFrame()
|
|
|
|
flat_data = []
|
|
|
|
dfT = df.T
|
|
|
|
for n in dfT:
|
2017-03-07 05:32:44 +00:00
|
|
|
pre_di = dfT[n][no_student_columns].to_dict()
|
2016-11-06 17:54:42 +00:00
|
|
|
for e in students:
|
|
|
|
data = pre_di.copy()
|
|
|
|
data["Eleve"] = e
|
|
|
|
data["Note"] = dfT[n].loc[e]
|
|
|
|
flat_data.append(data)
|
|
|
|
return pd.DataFrame.from_dict(flat_data)
|
|
|
|
|
2016-11-13 12:35:44 +00:00
|
|
|
def parse_sheets(ws,
|
|
|
|
marks_sheetnames = ["Notes", "Connaissances", "Calcul mental"]):
|
|
|
|
""" Parse sheets from marks_sheetnames
|
2016-11-06 17:54:42 +00:00
|
|
|
|
2016-11-13 12:35:44 +00:00
|
|
|
:param ws: the worksheet
|
|
|
|
:param marks_sheetnames: names of sheets for extracting
|
2016-11-06 17:54:42 +00:00
|
|
|
|
|
|
|
"""
|
2016-11-13 12:35:44 +00:00
|
|
|
sheets = []
|
2016-11-06 17:54:42 +00:00
|
|
|
for sheetname in marks_sheetnames:
|
|
|
|
try:
|
2016-11-13 12:35:44 +00:00
|
|
|
sheets.append(ws.parse(sheetname))
|
2016-11-06 17:54:42 +00:00
|
|
|
except xlrd.biffh.XLRDError:
|
|
|
|
pass
|
2016-11-13 12:35:44 +00:00
|
|
|
return sheets
|
2016-11-06 17:54:42 +00:00
|
|
|
|
2016-11-13 12:35:44 +00:00
|
|
|
def extract_flat_marks(ws,
|
|
|
|
marks_sheetnames=["Notes", "Connaissances", "Calcul mental"]):
|
2016-11-06 17:54:42 +00:00
|
|
|
""" Extract, flat and contact marks from the worksheet
|
|
|
|
|
2016-11-13 12:35:44 +00:00
|
|
|
:param ws: the worksheet
|
|
|
|
:param marks_sheetnames: name of worksheets
|
2016-11-06 17:54:42 +00:00
|
|
|
:returns: TODO
|
|
|
|
|
|
|
|
"""
|
2016-11-13 12:35:44 +00:00
|
|
|
sheets = parse_sheets(ws, marks_sheetnames)
|
2016-11-06 17:54:42 +00:00
|
|
|
|
|
|
|
students = check_students(sheets)
|
|
|
|
|
|
|
|
flat_df = pd.DataFrame()
|
|
|
|
for sheet in sheets:
|
|
|
|
flat = flat_df_students(sheet, students)
|
|
|
|
flat_df = pd.concat([flat_df, flat])
|
|
|
|
|
2017-03-29 02:28:51 +00:00
|
|
|
flat_df["Question"].fillna("", inplace = True)
|
|
|
|
flat_df["Exercice"].fillna("", inplace = True)
|
|
|
|
flat_df["Commentaire"].fillna("", inplace = True)
|
|
|
|
flat_df["Competence"].fillna("", inplace = True)
|
|
|
|
|
2016-11-06 17:54:42 +00:00
|
|
|
return flat_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# -----------------------------
|
|
|
|
# Reglages pour 'vim'
|
|
|
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
|
|
|
# cursor: 16 del
|