2016-11-26 15:44:13 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# encoding: utf-8
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
2017-03-10 05:15:30 +00:00
|
|
|
from notes_tools.tools.marks_plottings import (pie_pivot_table,
|
|
|
|
parallel_on,
|
|
|
|
radar_on,
|
|
|
|
)
|
2016-11-26 15:44:13 +00:00
|
|
|
|
2017-03-23 06:08:47 +00:00
|
|
|
import seaborn as sns
|
|
|
|
|
2017-03-10 05:15:30 +00:00
|
|
|
__all__ = ["students_pov", "class_pov"]
|
2016-11-26 15:44:13 +00:00
|
|
|
|
2017-03-10 05:15:30 +00:00
|
|
|
class Student(object):
|
|
|
|
|
|
|
|
"""
|
|
|
|
Informations on a student which can be use inside template.
|
|
|
|
|
|
|
|
Those informations should not be modify or use for compute analysis otherwise they won't be spread over other POV.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, quest_df, exo_df, eval_df):
|
|
|
|
"""
|
|
|
|
Description of a student from quest, exo and eval
|
|
|
|
|
|
|
|
"""
|
2017-03-23 06:23:55 +00:00
|
|
|
|
|
|
|
name = {*quest_df["Eleve"].unique(),
|
|
|
|
*exo_df["Eleve"].unique(),
|
|
|
|
*eval_df["Eleve"].unique(),
|
|
|
|
}
|
|
|
|
|
|
|
|
if len(name) != 1:
|
2017-03-10 05:15:30 +00:00
|
|
|
raise ValueError("Can't initiate Student: dfs contains different student names")
|
|
|
|
|
2017-03-23 06:23:55 +00:00
|
|
|
self.name = name.pop()
|
2017-03-10 05:15:30 +00:00
|
|
|
|
|
|
|
self.quest_df = quest_df
|
|
|
|
self.exo_df = exo_df
|
|
|
|
self.eval_df = eval_df
|
|
|
|
|
|
|
|
@property
|
|
|
|
def marks_tabular(self):
|
|
|
|
""" Latex tabular with all of his marks of the term """
|
|
|
|
try:
|
|
|
|
self._marks_tabular
|
|
|
|
except AttributeError:
|
2017-03-23 06:23:55 +00:00
|
|
|
self._marks_tabular = self.eval_df[["Nom", "Mark_barem"]]
|
|
|
|
self._marks_tabular.columns = ["Devoir", "Note"]
|
|
|
|
return self._marks_tabular.to_latex()
|
2017-03-10 05:15:30 +00:00
|
|
|
|
|
|
|
@property
|
|
|
|
def pies_on_competence(self):
|
|
|
|
""" Pies chart on competences """
|
2017-04-01 12:32:19 +00:00
|
|
|
return pie_pivot_table(self.quest_df,
|
2017-03-10 05:15:30 +00:00
|
|
|
index = "Level",
|
|
|
|
columns = "Competence",
|
|
|
|
values = "Eleve",
|
|
|
|
aggfunc = len,
|
|
|
|
fill_value = 0,
|
|
|
|
)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def pies_on_domaine(self):
|
|
|
|
""" Pies chart on domaines """
|
2017-04-01 12:32:19 +00:00
|
|
|
return pie_pivot_table(self.quest_df,
|
2017-03-10 05:15:30 +00:00
|
|
|
index = "Level",
|
|
|
|
columns = "Domaine",
|
|
|
|
values = "Eleve",
|
|
|
|
aggfunc = len,
|
|
|
|
fill_value = 0,
|
|
|
|
)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def radar_on_competence(self):
|
|
|
|
""" Radar plot on competence """
|
2017-04-01 12:32:19 +00:00
|
|
|
return radar_on(self.quest_df,
|
2017-03-10 05:15:30 +00:00
|
|
|
"Competence")
|
|
|
|
|
|
|
|
@property
|
|
|
|
def radar_on_domaine(self):
|
|
|
|
""" Radar plot on domaine """
|
2017-04-01 12:32:19 +00:00
|
|
|
return radar_on(self.quest_df,
|
2017-03-10 05:15:30 +00:00
|
|
|
"Domaine")
|
|
|
|
|
2017-03-23 06:08:47 +00:00
|
|
|
@property
|
|
|
|
def heatmap_on_domain(self):
|
|
|
|
""" Heatmap over evals on domains """
|
2017-04-01 12:32:19 +00:00
|
|
|
comp = pd.pivot_table(self.quest_df,
|
|
|
|
index = "Domaine",
|
|
|
|
columns = ["Date","Nom"],
|
|
|
|
values = ["Normalized"],
|
|
|
|
aggfunc = np.mean,
|
|
|
|
)
|
|
|
|
comp.columns = [i[1].strftime("%Y-%m-%d") + "\n" + i[2] for i in comp.columns]
|
|
|
|
return sns.heatmap(comp)
|
2017-03-23 06:08:47 +00:00
|
|
|
|
2017-04-01 12:32:19 +00:00
|
|
|
@property
|
|
|
|
def heatmap_on_competence(self):
|
|
|
|
""" Heatmap over evals on competences """
|
|
|
|
comp = pd.pivot_table(self.quest_df,
|
|
|
|
index = "Competence",
|
|
|
|
columns = ["Date","Nom"],
|
|
|
|
values = ["Normalized"],
|
|
|
|
aggfunc = np.mean,
|
|
|
|
)
|
|
|
|
comp.columns = [i[1].strftime("%Y-%m-%d") + "\n" + i[2] for i in comp.columns]
|
|
|
|
return sns.heatmap(comp)
|
2017-03-10 05:15:30 +00:00
|
|
|
|
|
|
|
def parallel_on_evals(self, classe_evals):
|
|
|
|
""" Parallel coordinate plot of the class with student line highlight """
|
|
|
|
return parallel_on(classe_evals, "Nom", self.name)
|
|
|
|
|
|
|
|
class Classe(object):
|
|
|
|
|
|
|
|
"""
|
|
|
|
Informations on a class which can be use inside template.
|
|
|
|
|
|
|
|
Those informations should not be modify or use for compute analysis otherwise they won't be spread over other POV.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, quest_df, exo_df, eval_df):
|
|
|
|
""" Init of a class from quest, exo and eval """
|
|
|
|
self.quest_df = quest_df
|
|
|
|
self.exo_df = exo_df
|
|
|
|
self.eval_df = eval_df
|
|
|
|
|
|
|
|
@property
|
|
|
|
def evals_tabular(self):
|
|
|
|
""" Summary of all evaluations for all students """
|
|
|
|
try:
|
|
|
|
self._evals_tabular
|
|
|
|
except AttributeError:
|
|
|
|
self._evals_tabular = pd.pivot_table(self.eval_df,
|
|
|
|
index = "Eleve",
|
|
|
|
columns = "Nom",
|
|
|
|
values = "Mark_barem",
|
|
|
|
aggfunc = lambda x: " ".join(x)).to_latex()
|
|
|
|
return self._evals_tabular
|
|
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
def parallel_on_evals(self):
|
|
|
|
""" Parallel coordinate plot of the class """
|
|
|
|
return parallel_on(self.eval_df, "Nom")
|
|
|
|
|
|
|
|
@property
|
|
|
|
def pies_eff_pts_on_competence(self):
|
|
|
|
""" Pie charts on competence with repartition of evaluated times and attributed points """
|
2017-03-31 16:56:36 +00:00
|
|
|
return pie_pivot_table(self.quest_df[["Competence", "Bareme", "Exercice", "Question", "Commentaire"]].drop_duplicates(),
|
2017-03-10 05:15:30 +00:00
|
|
|
index = "Competence",
|
|
|
|
#columns = "Level",
|
|
|
|
values = "Bareme",
|
|
|
|
aggfunc=[len,np.sum],
|
|
|
|
fill_value=0)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def pies_eff_pts_on_domaine(self):
|
|
|
|
""" Pie charts on domaine with repartition of evaluated times and attributed points """
|
2017-03-31 16:56:36 +00:00
|
|
|
return pie_pivot_table(self.quest_df[["Domaine", "Bareme", "Exercice", "Question", "Commentaire"]].drop_duplicates(),
|
2017-03-10 05:15:30 +00:00
|
|
|
index = "Domaine",
|
|
|
|
#columns = "Level",
|
|
|
|
values = "Bareme",
|
|
|
|
aggfunc=[len,np.sum],
|
|
|
|
fill_value=0)
|
|
|
|
|
|
|
|
def select(quest_df, exo_df, eval_df, index, value):
|
|
|
|
""" Return quest, exo and eval rows which correspond index == value
|
2016-11-26 15:44:13 +00:00
|
|
|
|
|
|
|
:param quest_df: TODO
|
|
|
|
:param exo_df: TODO
|
|
|
|
:param eval_df: TODO
|
|
|
|
|
|
|
|
"""
|
2017-03-10 05:15:30 +00:00
|
|
|
qu = quest_df[quest_df[index] == value]
|
|
|
|
exo = exo_df[exo_df[index] == value]
|
|
|
|
ev = eval_df[eval_df[index] == value]
|
2016-11-26 15:44:13 +00:00
|
|
|
return qu, exo, ev
|
|
|
|
|
|
|
|
def students_pov(quest_df, exo_df, eval_df):
|
|
|
|
es = []
|
|
|
|
for e in eval_df["Eleve"].unique():
|
2017-03-10 05:15:30 +00:00
|
|
|
d = select(quest_df, exo_df, eval_df, "Eleve", e)
|
|
|
|
eleve = Student(*d)
|
2016-11-26 15:44:13 +00:00
|
|
|
es.append(eleve)
|
|
|
|
return es
|
|
|
|
|
2017-03-10 05:15:30 +00:00
|
|
|
def class_pov(quest_df, exo_df, eval_df):
|
|
|
|
return Classe(quest_df, exo_df, eval_df)
|
|
|
|
|
2016-11-26 15:44:13 +00:00
|
|
|
|
|
|
|
# -----------------------------
|
|
|
|
# Reglages pour 'vim'
|
|
|
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
|
|
|
# cursor: 16 del
|