2016-11-06 17:54:42 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# encoding: utf-8
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
|
|
|
from math import ceil
|
|
|
|
|
|
|
|
# Values manipulations
|
|
|
|
|
|
|
|
def round_half_point(val):
|
2016-11-13 13:18:26 +00:00
|
|
|
try:
|
|
|
|
return 0.5 * ceil(2.0 * val)
|
|
|
|
except ValueError:
|
|
|
|
return val
|
2016-11-06 17:54:42 +00:00
|
|
|
|
|
|
|
latex_caract = ["\\NoRep", "\\RepZ", "\\RepU", "\\RepD", "\\RepT"]
|
|
|
|
def note_to_rep(x):
|
|
|
|
r""" Transform a Note to the latex caracter
|
|
|
|
|
2016-11-13 13:14:32 +00:00
|
|
|
:param x: dictionnary with "Niveau" and "Note" keys
|
|
|
|
|
2016-11-06 17:54:42 +00:00
|
|
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
|
|
|
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
|
|
|
|
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
|
|
|
|
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
|
|
|
|
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
|
|
|
|
... "Trimestre": ["1"]*12,
|
|
|
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
|
|
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
|
|
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
|
|
|
... }
|
|
|
|
>>> df = pd.DataFrame(d)
|
|
|
|
>>> note_to_rep(df.loc[0])
|
|
|
|
1.0
|
|
|
|
>>> note_to_rep(df.loc[4])
|
|
|
|
'\\RepU'
|
|
|
|
"""
|
|
|
|
if x["Niveau"]:
|
|
|
|
if pd.isnull(x["Note"]):
|
|
|
|
return latex_caract[0]
|
|
|
|
elif x["Note"] in range(4):
|
|
|
|
return latex_caract[int(x["Note"])+1]
|
|
|
|
return x["Note"]
|
|
|
|
|
|
|
|
def note_to_mark(x):
|
|
|
|
""" Compute the mark when it is a "Nivea" note
|
|
|
|
|
2016-11-13 13:14:32 +00:00
|
|
|
:param x: dictionnary with "Niveau", "Note" and "Bareme" keys
|
|
|
|
|
2016-11-06 17:54:42 +00:00
|
|
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
|
|
|
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
|
|
|
|
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
|
|
|
|
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
|
|
|
|
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
|
|
|
|
... "Trimestre": ["1"]*12,
|
|
|
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
|
|
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
|
|
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
|
|
|
... }
|
|
|
|
>>> df = pd.DataFrame(d)
|
|
|
|
>>> note_to_mark(df.loc[0])
|
|
|
|
1.0
|
|
|
|
>>> note_to_mark(df.loc[10])
|
|
|
|
1.3333333333333333
|
|
|
|
"""
|
|
|
|
|
|
|
|
if x["Niveau"]:
|
|
|
|
return x["Note"] * x["Bareme"] / 3
|
|
|
|
return x["Note"]
|
|
|
|
|
|
|
|
# DataFrame columns manipulations
|
|
|
|
|
|
|
|
def compute_marks(df):
|
|
|
|
""" Add Mark column to df
|
|
|
|
|
2016-11-13 11:40:36 +00:00
|
|
|
:param df: DataFrame with "Note", "Niveau" and "Bareme" columns.
|
|
|
|
|
2016-11-06 17:54:42 +00:00
|
|
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
|
|
|
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
|
|
|
|
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
|
|
|
|
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
|
|
|
|
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
|
|
|
|
... "Trimestre": ["1"]*12,
|
|
|
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
|
|
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
|
|
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
|
|
|
... }
|
|
|
|
>>> df = pd.DataFrame(d)
|
|
|
|
>>> compute_marks(df)
|
|
|
|
0 1.000000
|
|
|
|
1 0.330000
|
|
|
|
2 2.000000
|
|
|
|
3 1.500000
|
|
|
|
4 0.666667
|
|
|
|
5 2.000000
|
|
|
|
6 0.666000
|
|
|
|
7 1.000000
|
|
|
|
8 1.500000
|
|
|
|
9 1.000000
|
|
|
|
10 1.333333
|
|
|
|
11 2.000000
|
|
|
|
dtype: float64
|
|
|
|
"""
|
|
|
|
return df[["Note", "Niveau", "Bareme"]].apply(note_to_mark, axis=1).fillna(0)
|
|
|
|
|
|
|
|
def compute_latex_rep(df):
|
|
|
|
""" Add Latex_rep column to df
|
|
|
|
|
2016-11-13 11:40:36 +00:00
|
|
|
:param df: DataFrame with "Note" and "Niveau" columns.
|
|
|
|
|
2016-11-06 17:54:42 +00:00
|
|
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
|
|
|
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
|
|
|
|
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
|
|
|
|
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
|
|
|
|
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
|
|
|
|
... "Trimestre": ["1"]*12,
|
|
|
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
|
|
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
|
|
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
|
|
|
... }
|
|
|
|
>>> df = pd.DataFrame(d)
|
|
|
|
>>> compute_latex_rep(df)
|
|
|
|
0 1
|
|
|
|
1 0.33
|
|
|
|
2 2
|
|
|
|
3 1.5
|
|
|
|
4 \RepU
|
|
|
|
5 \RepT
|
|
|
|
6 0.666
|
|
|
|
7 1
|
|
|
|
8 1.5
|
|
|
|
9 1
|
|
|
|
10 \RepD
|
|
|
|
11 \RepT
|
|
|
|
dtype: object
|
|
|
|
"""
|
|
|
|
return df[["Note", "Niveau"]].apply(note_to_rep, axis=1).fillna("??")
|
|
|
|
|
2016-11-13 11:40:36 +00:00
|
|
|
def compute_normalized(df):
|
|
|
|
""" Compute the normalized mark (Mark / Bareme)
|
|
|
|
|
|
|
|
:param df: DataFrame with "Mark" and "Bareme" columns
|
|
|
|
|
|
|
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
|
|
|
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
|
|
|
|
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
|
|
|
|
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
|
|
|
|
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
|
|
|
|
... "Trimestre": ["1"]*12,
|
|
|
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
|
|
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
|
|
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
|
|
|
... }
|
|
|
|
>>> df = pd.DataFrame(d)
|
|
|
|
>>> df["Mark"] = compute_marks(df)
|
|
|
|
>>> compute_normalized(df)
|
|
|
|
0 1.000000
|
|
|
|
1 0.330000
|
|
|
|
2 1.000000
|
|
|
|
3 0.750000
|
|
|
|
4 0.333333
|
|
|
|
5 1.000000
|
|
|
|
6 0.666000
|
|
|
|
7 1.000000
|
|
|
|
8 0.750000
|
|
|
|
9 0.500000
|
|
|
|
10 0.666667
|
|
|
|
11 1.000000
|
|
|
|
dtype: float64
|
|
|
|
"""
|
|
|
|
return df["Mark"] / df["Bareme"]
|
|
|
|
|
2016-11-06 17:54:42 +00:00
|
|
|
# Computing custom values
|
|
|
|
|
|
|
|
def compute_exo_marks(df):
|
|
|
|
""" Compute Exercice level marks
|
|
|
|
|
|
|
|
:param df: the original marks
|
|
|
|
:returns: DataFrame with computed marks
|
|
|
|
|
|
|
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
|
|
|
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
|
|
|
|
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
|
|
|
|
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
|
|
|
|
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
|
|
|
|
... "Trimestre": ["1"]*12,
|
|
|
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
|
|
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
|
|
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
|
|
|
... }
|
|
|
|
>>> df = pd.DataFrame(d)
|
|
|
|
>>> df["Mark"] = compute_marks(df)
|
|
|
|
>>> compute_exo_marks(df)
|
|
|
|
Eleve Nom Exercice Date Trimestre Bareme Mark Question Niveau
|
2016-11-13 12:35:44 +00:00
|
|
|
0 E1 N1 Ex1 16/09/2016 1 2.0 1.5 Total 0
|
|
|
|
1 E1 N1 Ex2 16/09/2016 1 4.0 3.5 Total 0
|
|
|
|
2 E1 N2 Ex1 01/10/2016 1 2.0 1.0 Total 0
|
|
|
|
3 E1 N2 Ex2 01/10/2016 1 2.0 2.0 Total 0
|
|
|
|
4 E2 N1 Ex1 16/09/2016 1 2.0 2.0 Total 0
|
|
|
|
5 E2 N1 Ex2 16/09/2016 1 4.0 2.5 Total 0
|
|
|
|
6 E2 N2 Ex1 01/10/2016 1 2.0 1.5 Total 0
|
|
|
|
7 E2 N2 Ex2 01/10/2016 1 2.0 2.0 Total 0
|
|
|
|
|
2016-11-06 17:54:42 +00:00
|
|
|
|
|
|
|
"""
|
|
|
|
exo_pt = pd.pivot_table(df,
|
|
|
|
index = [ "Eleve", "Nom", "Exercice", "Date", "Trimestre"],
|
|
|
|
values = ["Bareme", "Mark"],
|
|
|
|
aggfunc=np.sum,
|
|
|
|
).applymap(round_half_point)
|
|
|
|
|
|
|
|
exo = exo_pt.reset_index()
|
|
|
|
exo["Question"] = "Total"
|
|
|
|
exo["Niveau"] = 0
|
|
|
|
return exo
|
|
|
|
|
|
|
|
def compute_eval_marks(df):
|
|
|
|
""" Compute Nom level marks from the dataframe using only row with Total in Question
|
|
|
|
|
|
|
|
:param df: DataFrame with value Total in Question column
|
|
|
|
:returns: DataFrame with evaluation marks
|
|
|
|
|
|
|
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
|
|
|
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
|
|
|
|
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
|
|
|
|
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
|
|
|
|
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
|
|
|
|
... "Trimestre": ["1"]*12,
|
|
|
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
|
|
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
|
|
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
|
|
|
... }
|
|
|
|
>>> df = pd.DataFrame(d)
|
|
|
|
>>> df["Mark"] = compute_marks(df)
|
|
|
|
>>> df_exo = compute_exo_marks(df)
|
|
|
|
>>> compute_eval_marks(df_exo)
|
|
|
|
Eleve Nom Date Trimestre Bareme Mark Exercice Niveau
|
2016-11-13 12:35:44 +00:00
|
|
|
0 E1 N1 16/09/2016 1 6.0 5.0 Total 0
|
|
|
|
1 E1 N2 01/10/2016 1 4.0 3.0 Total 0
|
|
|
|
2 E2 N1 16/09/2016 1 6.0 4.5 Total 0
|
|
|
|
3 E2 N2 01/10/2016 1 4.0 3.5 Total 0
|
2016-11-06 17:54:42 +00:00
|
|
|
|
|
|
|
"""
|
|
|
|
exo = df[df["Question"] == "Total"]
|
|
|
|
eval_pt = pd.pivot_table(exo,
|
|
|
|
index = [ "Eleve", "Nom", "Date", "Trimestre"],
|
|
|
|
values = ["Bareme", "Mark"],
|
|
|
|
aggfunc=np.sum,
|
|
|
|
).applymap(round_half_point)
|
|
|
|
|
|
|
|
eval_m = eval_pt.reset_index()
|
|
|
|
eval_m["Exercice"] = "Total"
|
|
|
|
eval_m["Niveau"] = 0
|
|
|
|
return eval_m
|
|
|
|
|
|
|
|
def digest_flat_df(flat_df):
|
|
|
|
""" Compute necessary element to make a flat df usable for analysis.
|
|
|
|
|
|
|
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
|
|
|
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
|
|
|
|
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
|
|
|
|
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
|
|
|
|
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
|
|
|
|
... "Trimestre": ["1"]*12,
|
|
|
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
|
|
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
|
|
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
|
|
|
... }
|
|
|
|
>>> df = pd.DataFrame(d)
|
|
|
|
>>> quest_df, exo_df, eval_df = digest_flat_df(df)
|
|
|
|
"""
|
|
|
|
df = flat_df.copy()
|
|
|
|
df["Mark"] = compute_marks(flat_df)
|
|
|
|
df["Latex_rep"] = compute_latex_rep(flat_df)
|
2016-11-13 12:35:44 +00:00
|
|
|
df["Normalized"] = compute_normalized(df)
|
2016-11-06 17:54:42 +00:00
|
|
|
|
|
|
|
exo_df = compute_exo_marks(df)
|
2016-11-13 11:40:36 +00:00
|
|
|
exo_df["Normalized"] = compute_normalized(exo_df)
|
2016-11-06 17:54:42 +00:00
|
|
|
eval_df = compute_eval_marks(exo_df)
|
2016-11-13 11:40:36 +00:00
|
|
|
eval_df["Normalized"] = compute_normalized(eval_df)
|
2016-11-06 17:54:42 +00:00
|
|
|
|
|
|
|
return df, exo_df, eval_df
|
|
|
|
|
|
|
|
def students_pov(quest_df, exo_df, eval_df):
|
|
|
|
"""
|
|
|
|
|
|
|
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
|
|
|
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
|
|
|
|
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
|
|
|
|
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
|
|
|
|
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
|
|
|
|
... "Trimestre": ["1"]*12,
|
|
|
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
|
|
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
|
|
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
|
|
|
... }
|
|
|
|
>>> df = pd.DataFrame(d)
|
|
|
|
>>> quest_df, exo_df, eval_df = digest_flat_df(df)
|
|
|
|
>>> std_pov = students_pov(quest_df, exo_df, eval_df)
|
|
|
|
>>> std = std_pov[0]
|
|
|
|
>>> std["Nom"]
|
|
|
|
'E1'
|
|
|
|
>>> "{} / {}".format(std["Total"]["Mark"], std["Total"]["Bareme"])
|
|
|
|
'5.0 / 6.0'
|
|
|
|
>>> for exo in std["Exercices"]:
|
|
|
|
... print("{}: {} / {}".format(exo["Nom"], exo["Total"]["Mark"], exo["Total"]["Bareme"]))
|
|
|
|
Ex1: 1.5 / 2.0
|
|
|
|
Ex2: 3.5 / 4.0
|
|
|
|
>>> exo = std["Exercices"][0]
|
|
|
|
>>> for _,q in exo["Questions"].iterrows():
|
|
|
|
... print("{} : {}".format(q["Question"], q["Latex_rep"]))
|
|
|
|
Q1 : 1.0
|
|
|
|
Q2 : 0.33
|
|
|
|
Q1 : \RepU
|
|
|
|
|
|
|
|
"""
|
|
|
|
es = []
|
|
|
|
for e in eval_df["Eleve"].unique():
|
|
|
|
eleve = {"Nom":e}
|
|
|
|
e_quest = quest_df[quest_df["Eleve"] == e]
|
|
|
|
e_exo = exo_df[exo_df["Eleve"] == e]
|
|
|
|
#e_df = ds_df[ds_df["Eleve"] == e][["Exercice", "Question", "Bareme", "Commentaire", "Niveau", "Mark", "Latex_rep"]]
|
|
|
|
eleve["Total"] = eval_df[eval_df["Eleve"]==e].iloc[0]
|
|
|
|
|
|
|
|
exos = []
|
|
|
|
for exo in e_exo["Exercice"].unique():
|
|
|
|
ex = {"Nom":exo}
|
|
|
|
ex["Total"] = e_exo[e_exo["Exercice"]==exo].iloc[0]
|
|
|
|
ex["Questions"] = e_quest[e_quest["Exercice"] == exo]
|
|
|
|
exos.append(ex)
|
|
|
|
eleve["Exercices"] = exos
|
|
|
|
|
|
|
|
es.append(eleve)
|
|
|
|
return es
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# -----------------------------
|
|
|
|
# Reglages pour 'vim'
|
|
|
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
|
|
|
# cursor: 16 del
|