repytex/notes_tools/tools/marks_plottings.py

96 lines
2.6 KiB
Python
Raw Normal View History

2016-11-26 13:52:46 +00:00
#!/usr/bin/env python
# encoding: utf-8
from .plottings import radar_graph
2017-03-07 15:52:37 +00:00
from .skills_tools import count_levels, count_skill_evaluation
import matplotlib.pyplot as plt
2016-11-26 13:52:46 +00:00
import pandas as pd
import numpy as np
2017-03-07 15:52:37 +00:00
__all__ = ["radar_on",
"pie_skill_evaluation",
"pies_skills_level",
"marks_hist",
"parallele_on",
]
2017-03-07 11:06:37 +00:00
2016-11-26 15:03:03 +00:00
def radar_on(df, index, optimum = None):
""" Plot the radar graph concerning index column of the df
2016-11-26 13:52:46 +00:00
2016-11-26 15:03:03 +00:00
:param df: DataFrame with index and "Normalized" column
2016-11-26 13:52:46 +00:00
:returns: exes with radar plot
"""
comp_pt = pd.pivot_table(df,
2016-11-26 15:03:03 +00:00
index = [index],
2016-11-26 13:52:46 +00:00
values = ["Normalized"],
aggfunc=np.mean,
)
labels = list(comp_pt.index)
values = [i[0] for i in comp_pt.values]
if optimum is None:
optimum = [1]*len(values)
fig, ax = radar_graph(labels, values, optimum)
return fig, ax
2017-03-07 15:52:37 +00:00
def pie_skill_evaluation(df, skill):
""" Plot a pie plot with the repartition of skill evaluations
"""
ax = count_skill_evaluation(df, skill).plot.pie(autopct='%.0f')
return ax
def pies_skills_level(df, skill):
""" Plot series of pies (one by different skill) with level repartition """
levels_counts = count_levels(df, skill)
fig, ax = plt.subplots(nrows=1, ncols=len(levels_counts), figsize=(16,3))
plots = levels_counts.T.plot(ax=ax ,kind="pie", subplots=True, legend=False)
return fig, ax
2016-11-26 13:52:46 +00:00
def marks_hist(df):
""" Return axe for the histogramme of the dataframe
:param df: Dataframe with "Mark" and "Bareme" columns. If it has "Nom" column, it is use in title.
"""
bareme = df["Bareme"].max()
2017-01-31 11:06:45 +00:00
bins = int(bareme*2)
2016-11-26 13:52:46 +00:00
ax = df["Mark"].hist(bins = bins, range=(0,bareme))
try:
nom = df["Nom"].unique()
except KeyError:
title="Histogramme"
else:
title="Histogramme pour {}".format(" ".join(nom))
ax.set_title(title)
return ax
2016-11-26 16:26:47 +00:00
def parallele_on(df, index, student=None):
""" Plot parallele one line by student
:param df: TODO
:param index: TODO
:returns: TODO
"""
pt = pd.pivot_table(df,
index = [index],
values = ["Normalized"],
columns = ["Eleve"],
aggfunc = np.mean,
)["Normalized"]
ax = pt.plot(color="b", figsize=(10,5), legend=False)
pt.T.describe().T[["min", "25%","50%", "75%", "max"]].plot(ax=ax,
kind='area', stacked=False, alpha=0.2)
if not student is None:
pt.ix[:,student].plot(ax=ax, color="r")
return ax
2016-11-26 13:52:46 +00:00
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del