pass doctests
This commit is contained in:
parent
603e6cab84
commit
a761770510
@ -29,7 +29,7 @@ def note_to_rep(x):
|
|||||||
... "Trimestre": ["1"]*12,
|
... "Trimestre": ["1"]*12,
|
||||||
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
||||||
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
||||||
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.67, 1, 1.5, 1, 2, 3],
|
||||||
... }
|
... }
|
||||||
>>> df = pd.DataFrame(d)
|
>>> df = pd.DataFrame(d)
|
||||||
>>> note_to_rep(df.loc[0])
|
>>> note_to_rep(df.loc[0])
|
||||||
@ -136,18 +136,18 @@ def compute_marks(df):
|
|||||||
... }
|
... }
|
||||||
>>> df = pd.DataFrame(d)
|
>>> df = pd.DataFrame(d)
|
||||||
>>> compute_marks(df)
|
>>> compute_marks(df)
|
||||||
0 1.000000
|
0 1.00
|
||||||
1 0.330000
|
1 0.33
|
||||||
2 2.000000
|
2 2.00
|
||||||
3 1.500000
|
3 1.50
|
||||||
4 0.666667
|
4 0.67
|
||||||
5 2.000000
|
5 2.00
|
||||||
6 0.666000
|
6 0.67
|
||||||
7 1.000000
|
7 1.00
|
||||||
8 1.500000
|
8 1.50
|
||||||
9 1.000000
|
9 1.00
|
||||||
10 1.333333
|
10 1.33
|
||||||
11 2.000000
|
11 2.00
|
||||||
dtype: float64
|
dtype: float64
|
||||||
"""
|
"""
|
||||||
return df[["Note", "Niveau", "Bareme"]].apply(note_to_mark, axis=1)
|
return df[["Note", "Niveau", "Bareme"]].apply(note_to_mark, axis=1)
|
||||||
@ -175,7 +175,7 @@ def compute_latex_rep(df):
|
|||||||
3 1.5
|
3 1.5
|
||||||
4 \RepU
|
4 \RepU
|
||||||
5 \RepT
|
5 \RepT
|
||||||
6 0.666
|
6 0.67
|
||||||
7 1
|
7 1
|
||||||
8 1.5
|
8 1.5
|
||||||
9 1
|
9 1
|
||||||
@ -203,18 +203,18 @@ def compute_normalized(df):
|
|||||||
>>> df = pd.DataFrame(d)
|
>>> df = pd.DataFrame(d)
|
||||||
>>> df["Mark"] = compute_marks(df)
|
>>> df["Mark"] = compute_marks(df)
|
||||||
>>> compute_normalized(df)
|
>>> compute_normalized(df)
|
||||||
0 1.000000
|
0 1.00
|
||||||
1 0.330000
|
1 0.33
|
||||||
2 1.000000
|
2 1.00
|
||||||
3 0.750000
|
3 0.75
|
||||||
4 0.333333
|
4 0.33
|
||||||
5 1.000000
|
5 1.00
|
||||||
6 0.666000
|
6 0.67
|
||||||
7 1.000000
|
7 1.00
|
||||||
8 0.750000
|
8 0.75
|
||||||
9 0.500000
|
9 0.50
|
||||||
10 0.666667
|
10 0.67
|
||||||
11 1.000000
|
11 1.00
|
||||||
dtype: float64
|
dtype: float64
|
||||||
"""
|
"""
|
||||||
return df["Mark"] / df["Bareme"]
|
return df["Mark"] / df["Bareme"]
|
||||||
@ -239,7 +239,7 @@ def compute_exo_marks(df):
|
|||||||
... "Trimestre": ["1"]*12,
|
... "Trimestre": ["1"]*12,
|
||||||
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
||||||
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
||||||
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.67, 1, 1.5, 1, 2, 3],
|
||||||
... }
|
... }
|
||||||
>>> df = pd.DataFrame(d)
|
>>> df = pd.DataFrame(d)
|
||||||
>>> df["Mark"] = compute_marks(df)
|
>>> df["Mark"] = compute_marks(df)
|
||||||
@ -281,7 +281,7 @@ def compute_eval_marks(df):
|
|||||||
... "Trimestre": ["1"]*12,
|
... "Trimestre": ["1"]*12,
|
||||||
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
||||||
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
||||||
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.67, 1, 1.5, 1, 2, 3],
|
||||||
... }
|
... }
|
||||||
>>> df = pd.DataFrame(d)
|
>>> df = pd.DataFrame(d)
|
||||||
>>> df["Mark"] = compute_marks(df)
|
>>> df["Mark"] = compute_marks(df)
|
||||||
@ -342,33 +342,33 @@ def digest_flat_df(flat_df):
|
|||||||
>>> quest_df, exo_df, eval_df = digest_flat_df(df)
|
>>> quest_df, exo_df, eval_df = digest_flat_df(df)
|
||||||
>>> quest_df[['Eleve', "Nom", "Mark", "Latex_rep", "Normalized", "Uniq_quest"]]
|
>>> quest_df[['Eleve', "Nom", "Mark", "Latex_rep", "Normalized", "Uniq_quest"]]
|
||||||
Eleve Nom Mark Latex_rep Normalized Uniq_quest
|
Eleve Nom Mark Latex_rep Normalized Uniq_quest
|
||||||
0 E1 N1 1.000000 1 1.000000 Ex1 Q1
|
0 E1 N1 1.00 1 1.00 Ex1 Q1
|
||||||
1 E1 N1 0.330000 0.33 0.330000 Ex1 Q2
|
1 E1 N1 0.33 0.33 0.33 Ex1 Q2
|
||||||
2 E1 N1 2.000000 2 1.000000 Ex2 Q1
|
2 E1 N1 2.00 2 1.00 Ex2 Q1
|
||||||
3 E1 N1 1.500000 1.5 0.750000 Ex2 Q2
|
3 E1 N1 1.50 1.5 0.75 Ex2 Q2
|
||||||
4 E1 N2 0.666667 \RepU 0.333333 Ex1 Q1
|
4 E1 N2 0.67 \RepU 0.33 Ex1 Q1
|
||||||
5 E1 N2 2.000000 \RepT 1.000000 Ex2 Q1
|
5 E1 N2 2.00 \RepT 1.00 Ex2 Q1
|
||||||
6 E2 N1 NaN ?? NaN Ex1 Q1
|
6 E2 N1 NaN ?? NaN Ex1 Q1
|
||||||
7 E2 N1 0.000000 0 0.000000 Ex1 Q2
|
7 E2 N1 0.00 0 0.00 Ex1 Q2
|
||||||
8 E2 N1 0.000000 0 0.000000 Ex2 Q1
|
8 E2 N1 0.00 0 0.00 Ex2 Q1
|
||||||
9 E2 N1 NaN ?? NaN Ex2 Q2
|
9 E2 N1 NaN ?? NaN Ex2 Q2
|
||||||
10 E2 N2 NaN \NoRep NaN Ex1 Q1
|
10 E2 N2 NaN \NoRep NaN Ex1 Q1
|
||||||
11 E2 N2 NaN \NoRep NaN Ex2 Q1
|
11 E2 N2 NaN \NoRep NaN Ex2 Q1
|
||||||
>>> exo_df[['Eleve', "Nom", "Exercice", "Mark", "Normalized"]]
|
>>> exo_df[['Eleve', "Nom", "Exercice", "Mark", "Normalized"]]
|
||||||
Eleve Nom Exercice Mark Normalized
|
Eleve Nom Exercice Mark Normalized
|
||||||
0 E1 N1 Ex1 1.5 0.750
|
0 E1 N1 Ex1 1.5 0.75
|
||||||
1 E1 N1 Ex2 3.5 0.875
|
1 E1 N1 Ex2 3.5 0.88
|
||||||
2 E1 N2 Ex1 1.0 0.500
|
2 E1 N2 Ex1 1.0 0.50
|
||||||
3 E1 N2 Ex2 2.0 1.000
|
3 E1 N2 Ex2 2.0 1.00
|
||||||
4 E2 N1 Ex1 0.0 0.000
|
4 E2 N1 Ex1 0.0 0.00
|
||||||
5 E2 N1 Ex2 0.0 0.000
|
5 E2 N1 Ex2 0.0 0.00
|
||||||
6 E2 N2 Ex1 NaN NaN
|
6 E2 N2 Ex1 NaN NaN
|
||||||
7 E2 N2 Ex2 NaN NaN
|
7 E2 N2 Ex2 NaN NaN
|
||||||
>>> eval_df
|
>>> eval_df
|
||||||
index Eleve Nom Trimestre Bareme Date Mark Normalized
|
index Eleve Nom Trimestre Bareme Date Mark Normalized
|
||||||
0 0 E1 N1 1 6.0 16/09/2016 5.0 0.833333
|
0 0 E1 N1 1 6.0 16/09/2016 5.0 0.83
|
||||||
1 1 E2 N1 1 6.0 16/09/2016 0.0 0.000000
|
1 1 E2 N1 1 6.0 16/09/2016 0.0 0.00
|
||||||
2 0 E1 N2 1 4.0 01/10/2016 3.0 0.750000
|
2 0 E1 N2 1 4.0 01/10/2016 3.0 0.75
|
||||||
3 1 E2 N2 1 4.0 01/10/2016 NaN NaN
|
3 1 E2 N2 1 4.0 01/10/2016 NaN NaN
|
||||||
"""
|
"""
|
||||||
df = flat_df.copy()
|
df = flat_df.copy()
|
||||||
|
@ -50,6 +50,7 @@ def keep_only_presents(quest_df, exo_df, eval_df, presents):
|
|||||||
def students_pov(quest_df, exo_df, eval_df):
|
def students_pov(quest_df, exo_df, eval_df):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
>>> from .df_marks_manip import digest_flat_df
|
||||||
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
||||||
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
|
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
|
||||||
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
|
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
|
||||||
|
Loading…
Reference in New Issue
Block a user