Split ploting in 2
This commit is contained in:
parent
acc338367e
commit
c8b98dccec
53
notes_tools/tools/marks_plottings.py
Normal file
53
notes_tools/tools/marks_plottings.py
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# encoding: utf-8
|
||||||
|
|
||||||
|
from .plottings import radar_graph
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def comp_radar(df, optimum = None):
|
||||||
|
""" Plot the radar graph concerning "Competence" column of the df
|
||||||
|
|
||||||
|
:param df: DataFrame with "Competence", "Normalized"
|
||||||
|
:returns: exes with radar plot
|
||||||
|
|
||||||
|
"""
|
||||||
|
comp_pt = pd.pivot_table(df,
|
||||||
|
index = ["Competence"],
|
||||||
|
values = ["Normalized"],
|
||||||
|
aggfunc=np.mean,
|
||||||
|
)
|
||||||
|
labels = list(comp_pt.index)
|
||||||
|
values = [i[0] for i in comp_pt.values]
|
||||||
|
if optimum is None:
|
||||||
|
optimum = [1]*len(values)
|
||||||
|
fig, ax = radar_graph(labels, values, optimum)
|
||||||
|
return fig, ax
|
||||||
|
|
||||||
|
def marks_hist(df):
|
||||||
|
""" Return axe for the histogramme of the dataframe
|
||||||
|
|
||||||
|
:param df: Dataframe with "Mark" and "Bareme" columns. If it has "Nom" column, it is use in title.
|
||||||
|
"""
|
||||||
|
bareme = df["Bareme"].max()
|
||||||
|
bins = bareme*2
|
||||||
|
|
||||||
|
ax = df["Mark"].hist(bins = bins, range=(0,bareme))
|
||||||
|
|
||||||
|
try:
|
||||||
|
nom = df["Nom"].unique()
|
||||||
|
except KeyError:
|
||||||
|
title="Histogramme"
|
||||||
|
else:
|
||||||
|
title="Histogramme pour {}".format(" ".join(nom))
|
||||||
|
|
||||||
|
ax.set_title(title)
|
||||||
|
|
||||||
|
return ax
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# -----------------------------
|
||||||
|
# Reglages pour 'vim'
|
||||||
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
||||||
|
# cursor: 16 del
|
@ -7,6 +7,7 @@ from matplotlib.path import Path
|
|||||||
from matplotlib.spines import Spine
|
from matplotlib.spines import Spine
|
||||||
from matplotlib.projections.polar import PolarAxes
|
from matplotlib.projections.polar import PolarAxes
|
||||||
from matplotlib.projections import register_projection
|
from matplotlib.projections import register_projection
|
||||||
|
plt.style.use('ggplot')
|
||||||
|
|
||||||
def _radar_factory(num_vars):
|
def _radar_factory(num_vars):
|
||||||
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
|
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
|
||||||
@ -69,9 +70,6 @@ def radar_graph(labels = [], values = [], optimum = []):
|
|||||||
ax.plot(theta, optimum, color='r')
|
ax.plot(theta, optimum, color='r')
|
||||||
ax.set_varlabels(labels)
|
ax.set_varlabels(labels)
|
||||||
return fig, ax
|
return fig, ax
|
||||||
#plt.show()
|
|
||||||
#plt.savefig("radar.png", dpi=100)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# -----------------------------
|
# -----------------------------
|
||||||
|
Loading…
Reference in New Issue
Block a user