Renaming to Repytex

This commit is contained in:
Benjamin Bertrand
2017-04-17 15:04:01 +03:00
parent 745e307ffe
commit e4f93cd99c
24 changed files with 21 additions and 24 deletions

15
Repytex/tools/__init__.py Normal file
View File

@@ -0,0 +1,15 @@
#!/usr/bin/env python
# encoding: utf-8
from .extract import extract_flat_marks, get_class_ws, list_classes
from .df_marks_manip import digest_flat_df#, students_pov
#from .eval_tools import select_eval, get_present_absent, keep_only_presents
from .plottings import radar_graph
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

69
Repytex/tools/bareme.py Normal file
View File

@@ -0,0 +1,69 @@
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2017 lafrite <lafrite@Poivre>
#
# Distributed under terms of the MIT license.
"""
Manipulating rating scale of an evaluation.
Those functions are made to be applied over eval_df
"""
from .df_marks_manip import round_half_point, compute_mark_barem
__all__ = []
def new_scale_min(x):
""" Change the scale by selecting min between scale and mark """
return min(x["Mark_old"], x["Bareme"])
def new_scale_proportionnal(x):
""" Changing the scale proportionally """
return round_half_point(x["Mark_old"] * x["Bareme"] / x["Bareme_old"])
def tranform_scale(eval_df, new_scale, method):
""" Change the rating scale of the exam
It backups Bareme, Mark, Mark_barem columns adding "_old". The backup is done once then it is ignored.
It changes Bareme value to new_scale, applies method to marks and remake mark_bareme
:param eval_df: dataframe on evaluations
:param new_scale: replacement scale value
:param method: "min", "prop" or a function on eval_df rows
:returns: the transformed eval_df
"""
df = eval_df.copy()
for c in ["Bareme", "Mark", "Mark_barem"]:
try:
df[c+"_old"]
except KeyError:
df[c+"_old"] = df[c]
df["Bareme"] = new_scale
TRANFS = {"min": new_scale_min,
"prop": new_scale_proportionnal,
}
try:
t = TRANFS[method]
except KeyError:
df["Mark"] = df.apply(method)
else:
df["Mark"] = df.apply(t, axis=1)
df["Mark_barem"] = compute_mark_barem(df)
return df
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -0,0 +1,501 @@
#!/usr/bin/env python
# encoding: utf-8
import pandas as pd
import numpy as np
from math import ceil, floor
import logging
logger = logging.getLogger(__name__)
NOANSWER = "."
NORATED = ""
# Values manipulations
def round_half_point(val):
try:
return 0.5 * ceil(2.0 * val)
except ValueError:
return val
except TypeError:
return val
def num_format(num):
""" Tranform a number into an appropriate string """
try:
if int(num) == num:
return str(int(num))
except ValueError:
pass
return f"{num:.1f}".replace(".", ",")
latex_caract = ["\\NoRep", "\\RepZ", "\\RepU", "\\RepD", "\\RepT"]
def note_to_rep(x):
r""" Transform a Note to the latex caracter
:param x: dictionnary with "Niveau" and "Note" keys
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
... "Trimestre": ["1"]*12,
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.67, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> note_to_rep(df.loc[0])
1.0
>>> note_to_rep(df.loc[4])
'\\RepU'
"""
if x["Niveau"]:
if x["Note"] == NOANSWER:
return latex_caract[0]
elif x["Note"] in range(4):
return latex_caract[int(x["Note"])+1]
return x["Note"]
def note_to_mark(x):
""" Compute the mark when it is a "Niveau" note
:param x: dictionnary with "Niveau", "Note" and "Bareme" keys
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
... "Trimestre": ["1"]*12,
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> note_to_mark(df.loc[0])
1.0
>>> note_to_mark(df.loc[10])
1.3333333333333333
"""
if x["Niveau"]:
if x["Note"] == NOANSWER:
return 0
if x["Note"] not in [0, 1, 2, 3]:
raise ValueError(f"The evaluation is out of range: {x['Note']} at {x}")
return x["Note"] * x["Bareme"] / 3
if x["Note"] > x["Bareme"]:
logger.warning(f"The note ({x['Note']}) is greated than the rating scale ({x['Bareme']}) at {x}")
return x["Note"]
def note_to_level(x):
""" Compute the level ("na",0,1,2,3).
"na" correspond to "no answer"
:param x: dictionnary with "Niveau", "Note" and "Bareme" keys
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
... "Trimestre": ["1"]*12,
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
... "Note":[1, 0.33, np.nan, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> note_to_level(df.loc[0])
3
>>> note_to_level(df.loc[1])
1
>>> note_to_level(df.loc[2])
'na'
>>> note_to_level(df.loc[3])
3
>>> note_to_level(df.loc[5])
3
>>> note_to_level(df.loc[10])
2
"""
if x["Note"] == NOANSWER:
return "na"
if pd.isnull(x["Bareme"]) or x["Bareme"] == 0:
return "na"
if x["Niveau"]:
return int(x["Note"])
else:
return int(ceil(x["Note"] / x["Bareme"] * 3))
def mark_bareme_formater(row):
""" Create m/b string """
return f"{num_format(row['Mark'])} / {num_format(row['Bareme'])}"
def question_uniq_formater(row):
""" Create a kind of unique description of the question
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
... "Trimestre": ["1"]*12,
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> question_uniq_formater(df.loc[0])
'Ex1 Q1'
>>> question_uniq_formater(df.loc[10])
'Ex1 Q1'
"""
ans = ""
try:
int(row['Exercice'])
except ValueError:
ans += str(row["Exercice"])
else:
ans += "Exo"+str(row["Exercice"])
ans += " "
try:
int(row["Question"])
except ValueError:
if not pd.isnull(row["Question"]):
ans += str(row["Question"])
else:
ans += "Qu"+str(row["Question"])
try:
row["Commentaire"]
except KeyError:
pass
else:
if not pd.isnull(row["Commentaire"]):
ans += " ({})".format(row["Commentaire"])
return ans
# DataFrame columns manipulations
def compute_marks(df):
""" Add Mark column to df
:param df: DataFrame with "Note", "Niveau" and "Bareme" columns.
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
... "Trimestre": ["1"]*12,
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> compute_marks(df)
0 1.00
1 0.33
2 2.00
3 1.50
4 0.67
5 2.00
6 0.67
7 1.00
8 1.50
9 1.00
10 1.33
11 2.00
dtype: float64
"""
return df[["Note", "Niveau", "Bareme"]].apply(note_to_mark, axis=1)
def compute_level(df):
""" Add Mark column to df
:param df: DataFrame with "Note", "Niveau" and "Bareme" columns.
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
... "Trimestre": ["1"]*12,
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
... "Note":[np.nan, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> compute_level(df)
0 na
1 1
2 3
3 3
4 1
5 3
6 2
7 3
8 3
9 2
10 2
11 3
dtype: object
"""
return df[["Note", "Niveau", "Bareme"]].apply(note_to_level, axis=1)
def compute_latex_rep(df):
""" Add Latex_rep column to df
:param df: DataFrame with "Note" and "Niveau" columns.
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
... "Trimestre": ["1"]*12,
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> compute_latex_rep(df)
0 1
1 0.33
2 2
3 1.5
4 \RepU
5 \RepT
6 0.67
7 1
8 1.5
9 1
10 \RepD
11 \RepT
dtype: object
"""
return df[["Note", "Niveau"]].apply(note_to_rep, axis=1).fillna("??")
def compute_normalized(df):
""" Compute the normalized mark (Mark / Bareme)
:param df: DataFrame with "Mark" and "Bareme" columns
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
... "Trimestre": ["1"]*12,
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> df["Mark"] = compute_marks(df)
>>> compute_normalized(df)
0 1.00
1 0.33
2 1.00
3 0.75
4 0.33
5 1.00
6 0.67
7 1.00
8 0.75
9 0.50
10 0.67
11 1.00
dtype: float64
"""
return df["Mark"] / df["Bareme"]
def compute_mark_barem(df):
""" Build the string mark m/b """
return df.apply(mark_bareme_formater, axis=1)
def compute_question_description(df):
""" Compute the unique description of a question """
return df.apply(question_uniq_formater, axis = 1)
# Computing custom values
def compute_exo_marks(df):
""" Compute Exercice level marks
:param df: the original marks
:returns: DataFrame with computed marks
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
... "Trimestre": ["1"]*12,
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.67, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> df["Mark"] = compute_marks(df)
>>> compute_exo_marks(df)
Eleve Nom Exercice Date Trimestre Bareme Mark Question Niveau
0 E1 N1 Ex1 16/09/2016 1 2.0 1.5 Total 0
1 E1 N1 Ex2 16/09/2016 1 4.0 3.5 Total 0
2 E1 N2 Ex1 01/10/2016 1 2.0 1.0 Total 0
3 E1 N2 Ex2 01/10/2016 1 2.0 2.0 Total 0
4 E2 N1 Ex1 16/09/2016 1 2.0 2.0 Total 0
5 E2 N1 Ex2 16/09/2016 1 4.0 2.5 Total 0
6 E2 N2 Ex1 01/10/2016 1 2.0 1.5 Total 0
7 E2 N2 Ex2 01/10/2016 1 2.0 2.0 Total 0
"""
exo_pt = pd.pivot_table(df,
index = [ "Eleve", "Nom", "Exercice", "Date", "Trimestre"],
values = ["Bareme", "Mark"],
aggfunc=np.sum,
).applymap(round_half_point)
exo = exo_pt.reset_index()
exo["Question"] = "Total"
exo["Niveau"] = 0
return exo
def compute_eval_marks(df):
""" Compute Nom level marks from the dataframe using only row with Total in Question
:param df: DataFrame with value Total in Question column
:returns: DataFrame with evaluation marks
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
... "Trimestre": ["1"]*12,
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.67, 1, 1.5, 1, 2, 3],
... }
>>> df = pd.DataFrame(d)
>>> df["Mark"] = compute_marks(df)
>>> df_exo = compute_exo_marks(df)
>>> compute_eval_marks(df_exo)
index Eleve Nom Trimestre Bareme Date Mark
0 0 E1 N1 1 6.0 16/09/2016 5.0
1 1 E2 N1 1 6.0 16/09/2016 4.5
2 0 E1 N2 1 4.0 01/10/2016 3.0
3 1 E2 N2 1 4.0 01/10/2016 3.5
"""
def date_format(dates):
date_l = list(dates.unique())
if len(date_l) == 1:
return date_l[0]
else:
return "Trimestre"
eval_m = pd.DataFrame()
for eval_name in df["Nom"].unique():
logger.debug(f"Compute marks for {eval_name}")
eval_df = df[df["Nom"] == eval_name]
dates = eval_df["Date"].unique()
logger.debug(f"Find those dates: {dates}")
if len(dates) > 1 or dates[0] == "Trimestre":
# Les devoirs sur la durée, les NaN ne sont pas pénalisants
# On les enlèves
eval_df = eval_df.dropna(subset=["Mark"])
dates = ["Trimestre"]
eval_pt = pd.pivot_table(eval_df,
index = [ "Eleve", "Nom", "Trimestre"],
values = ["Bareme", "Mark", "Date"],
aggfunc={"Bareme": np.sum, "Mark": np.sum, "Date":lambda x:dates[0]},
)
eval_pt = eval_pt.reset_index()
eval_m = pd.concat([eval_m, eval_pt])
eval_m = eval_m.reset_index()
return eval_m
def digest_flat_df(flat_df):
r""" Compute necessary element to make a flat df usable for analysis.
>>> from numpy import nan
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
... "Trimestre": ["1"]*12,
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
... "Note":[1, 0.33, 2, 1.5, 1, 3, np.nan, 0, 0, np.nan, np.nan, np.nan],
... }
>>> df = pd.DataFrame(d)
>>> quest_df, exo_df, eval_df = digest_flat_df(df)
>>> quest_df[['Eleve', "Nom", "Mark", "Latex_rep", "Normalized", "Uniq_quest", "Level"]]
Eleve Nom Mark Latex_rep Normalized Uniq_quest Level
0 E1 N1 1.00 1 1.00 Ex1 Q1 3
1 E1 N1 0.33 0.33 0.33 Ex1 Q2 1
2 E1 N1 2.00 2 1.00 Ex2 Q1 3
3 E1 N1 1.50 1.5 0.75 Ex2 Q2 3
4 E1 N2 0.67 \RepU 0.33 Ex1 Q1 1
5 E1 N2 2.00 \RepT 1.00 Ex2 Q1 3
6 E2 N1 NaN ?? NaN Ex1 Q1 na
7 E2 N1 0.00 0 0.00 Ex1 Q2 0
8 E2 N1 0.00 0 0.00 Ex2 Q1 0
9 E2 N1 NaN ?? NaN Ex2 Q2 na
10 E2 N2 NaN \NoRep NaN Ex1 Q1 na
11 E2 N2 NaN \NoRep NaN Ex2 Q1 na
>>> exo_df[['Eleve', "Nom", "Exercice", "Mark", "Normalized"]]
Eleve Nom Exercice Mark Normalized
0 E1 N1 Ex1 1.5 0.75
1 E1 N1 Ex2 3.5 0.88
2 E1 N2 Ex1 1.0 0.50
3 E1 N2 Ex2 2.0 1.00
4 E2 N1 Ex1 0.0 0.00
5 E2 N1 Ex2 0.0 0.00
6 E2 N2 Ex1 NaN NaN
7 E2 N2 Ex2 NaN NaN
>>> eval_df
index Eleve Nom Trimestre Bareme Date Mark Normalized
0 0 E1 N1 1 6.0 16/09/2016 5.0 0.83
1 1 E2 N1 1 6.0 16/09/2016 0.0 0.00
2 0 E1 N2 1 4.0 01/10/2016 3.0 0.75
3 1 E2 N2 1 4.0 01/10/2016 NaN NaN
"""
df = flat_df.dropna(subset=["Note"])
df["Mark"] = compute_marks(df)
df["Level"] = compute_level(df)
df["Latex_rep"] = compute_latex_rep(df)
df["Normalized"] = compute_normalized(df)
#df["Uniq_quest"] = compute_question_description(df)
exo_df = compute_exo_marks(df)
exo_df["Normalized"] = compute_normalized(exo_df)
exo_df["Mark_barem"] = compute_mark_barem(exo_df)
eval_df = compute_eval_marks(exo_df)
eval_df["Normalized"] = compute_normalized(eval_df)
eval_df["Mark_barem"] = compute_mark_barem(eval_df)
return df, exo_df, eval_df
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

282
Repytex/tools/evaluation.py Normal file
View File

@@ -0,0 +1,282 @@
#!/usr/bin/env python
# encoding: utf-8
import pandas as pd
import numpy as np
from notes_tools.tools.marks_plottings import (pie_pivot_table,
parallel_on,
radar_on,
hist_boxplot
)
import seaborn as sns
class Student(object):
"""
Informations on a student which can be use inside template.
Those informations should not be modify or use for compute analysis otherwise they won't be spread over other POV.
"""
def __init__(self, quest_df, exo_df, eval_df):
"""
Description of a student from quest, exo and eval
"""
name = {*quest_df["Eleve"].unique(),
*exo_df["Eleve"].unique(),
*eval_df["Eleve"].unique(),
}
if len(name) != 1:
raise ValueError("Can't initiate Student: dfs contains different student names")
self.name = name.pop()
evalname = {*quest_df["Nom"].unique(),
*exo_df["Nom"].unique(),
*eval_df["Nom"].unique(),
}
if len(evalname) != 1:
raise ValueError(f"Can't initiate Student: dfs contains different evaluation names ({'-'.join(evalname)})")
self.quest_df = quest_df
self.exo_df = exo_df
self.eval = eval_df.to_dict('records')[0]
@property
def latex_exo_tabulars(self):
""" Return list of latex tabulars. One by exercise of the evaluation """
try:
self._latex_exo_tabulars
except AttributeError:
self._latex_exo_tabulars = self.build_latex_exo_tabulars()
return self._latex_exo_tabulars
def build_latex_exo_tabulars(self):
tabulars = []
for t in self.exo_df["Exercice"]:
tabulars.append(self.build_latex_exo_tabular(t))
return tabulars
def build_latex_exo_tabular(self, exo_name):
exo = self.exo_df[self.exo_df["Exercice"] == exo_name]
quest = self.quest_df[self.quest_df["Exercice"] == exo_name]
tabular = [r"\begin{tabular}{|p{2cm}|p{1cm}|}"]
tabular.append(r"\hline")
tabular.append(r"\rowcolor{highlightbg}")
if type(exo_name) == int:
l = f"Exercice {exo_name} & {exo['Mark_barem'].all()}"
tabular.append(l + r" \\")
else:
l = f"{exo_name} & {exo['Mark_barem'].all()}"
tabular.append(l + r" \\")
tabular.append(r"\hline")
if len(quest) > 1:
for _, q in quest.iterrows():
line = ""
if not pd.isnull(q["Question"]):
line += " "+str(q['Question'])
if not pd.isnull(q["Commentaire"]):
line += " "+str(q['Commentaire'])
line += " & "
if q["Niveau"] == 1:
line += q['Latex_rep']
else:
line += str(q['Mark'])
line += r" \\"
tabular.append(line)
tabular.append(r"\hline")
tabular.append(r"\end{tabular}")
return '\n'.join(tabular)
@property
def pies_on_competence(self):
""" Pies chart on competences """
return pie_pivot_table(self.quest_df,
index = "Level",
columns = "Competence",
values = "Eleve",
aggfunc = len,
fill_value = 0,
)
@property
def pies_on_domaine(self):
""" Pies chart on domaines """
return pie_pivot_table(self.quest_df,
index = "Level",
columns = "Domaine",
values = "Eleve",
aggfunc = len,
fill_value = 0,
)
@property
def radar_on_competence(self):
""" Radar plot on competence """
return radar_on(self.quest_df,
"Competence")
@property
def radar_on_domaine(self):
""" Radar plot on domaine """
return radar_on(self.quest_df,
"Domaine")
@property
def heatmap_on_domain(self):
""" Heatmap over evals on domains """
comp = pd.pivot_table(self.quest_df,
index = "Competence",
columns = ["Exercice", "Question"],
values = ["Normalized"],
aggfunc = np.mean,
)
comp.columns = [f"{i['Exercice']} {i['Question']}" for _,i in self.quest_df[["Exercice", "Question"]].drop_duplicates().iterrows()]
return sns.heatmap(comp)
class Classe(object):
"""
Informations on a class which can be use inside template.
Those informations should not be modify or use for compute analysis otherwise they won't be spread over other POV.
"""
def __init__(self, quest_df, exo_df, eval_df):
""" Init of a class from quest, exo and eval """
names = {*quest_df["Nom"].unique(),
*exo_df["Nom"].unique(),
*eval_df["Nom"].unique(),
}
if len(names) != 1:
raise ValueError("Can't initiate Classe: dfs contains different evaluation names")
self.name = names.pop()
self.quest_df = quest_df
self.exo_df = exo_df
self.eval_df = eval_df
@property
def marks_tabular(self):
""" Latex tabular with marks of students"""
try:
self._marks_tabular
except AttributeError:
self._marks_tabular = self.eval_df[["Eleve", "Mark_barem"]]
self._marks_tabular.columns = ["Élèves", "Note"]
return self._marks_tabular.to_latex()
@property
def hist_boxplot(self):
""" Marks histogram and associed box plot """
return hist_boxplot(self.eval_df)
@property
def level_heatmap(self):
""" Heapmap on acheivement level """
pv = pd.pivot_table(self.quest_df,
index = "Eleve",
columns = ["Exercice", "Question", "Commentaire"],
values = ["Normalized"],
aggfunc = "mean",
)
def lines_4_heatmap(c):
lines = []
ini = ''
for k,v in enumerate(c.labels[1][::-1]):
if v != ini:
lines.append(k)
ini = v
return lines[1:]
exercice_sep = lines_4_heatmap(pv.columns)
pv.columns = [f"{i[3]:.15} {i[1]} {i[2]}" for i in pv.columns.get_values()]
level_heatmap = sns.heatmap(pv.T)
level_heatmap.hlines(exercice_sep,
*level_heatmap.get_xlim(),
colors = "orange",
)
return level_heatmap
@property
def pies_eff_pts_on_competence(self):
""" Pie charts on competence with repartition of evaluated times and attributed points """
return pie_pivot_table(self.quest_df[["Competence", "Bareme", "Exercice", "Question", "Commentaire"]].drop_duplicates(),
index = "Competence",
#columns = "Level",
values = "Bareme",
aggfunc=[len,np.sum],
fill_value=0)
@property
def pies_eff_pts_on_domaine(self):
""" Pie charts on domaine with repartition of evaluated times and attributed points """
return pie_pivot_table(self.quest_df[["Domaine", "Bareme", "Exercice", "Question", "Commentaire"]].drop_duplicates(),
index = "Domaine",
#columns = "Level",
values = "Bareme",
aggfunc=[len,np.sum],
fill_value=0)
# TODO: à factoriser Il y a la même dans term.py |jeu. mars 23 19:36:28 EAT 2017
def select(quest_df, exo_df, eval_df, index, value):
""" Return quest, exo and eval rows which correspond index == value
:param quest_df: TODO
:param exo_df: TODO
:param eval_df: TODO
"""
qu = quest_df[quest_df[index] == value]
exo = exo_df[exo_df[index] == value]
ev = eval_df[eval_df[index] == value]
return qu, exo, ev
def select_contains(quest_df, exo_df, eval_df, index, name_part):
""" Return quest, exo and eval rows which contains name_part
:param quest_df: TODO
:param exo_df: TODO
:param eval_df: TODO
"""
qu = quest_df[quest_df[index].str.contains(name_part)]
exo = exo_df[exo_df[index].str.contains(name_part)]
ev = eval_df[eval_df[index].str.contains(name_part)]
return qu, exo, ev
def students_pov(quest_df, exo_df, eval_df):
es = []
for e in eval_df["Eleve"].unique():
d = select(quest_df, exo_df, eval_df, "Eleve", e)
eleve = Student(*d)
es.append(eleve)
return es
def class_pov(quest_df, exo_df, eval_df):
return Classe(quest_df, exo_df, eval_df)
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

149
Repytex/tools/extract.py Normal file
View File

@@ -0,0 +1,149 @@
#!/usr/bin/env python
# encoding: utf-8
import pandas as pd
import numpy as np
import xlrd
from path import Path
notes_path = Path("./")
no_student_columns = ["Trimestre",
"Nom",
"Date",
"Exercice",
"Question",
"Competence",
"Domaine",
"Commentaire",
"Bareme",
"Niveau"]
pd.set_option("Precision",2)
def list_classes(path = notes_path):
"""
List classes available in notes_path
>>> list_classes()
[]
>>> p = Path("./samples/")
>>> list_classes(p)
['503', '312', '308']
>>> list_classes("./samples/")
['503', '312', '308']
"""
try:
return [n.namebase for n in path.files("*.xlsx")]
except AttributeError:
p = Path(path)
return [n.namebase for n in p.files("*.xlsx")]
def get_class_ws(classe, path = notes_path):
"""
From the name of a classe, returns pd.ExcelFile
"""
p = Path(path)
if classe in list_classes(p):
return pd.ExcelFile(p/classe+".xlsx")
else:
raise ValueError("This class is not disponible in {p}. You have to choose in {c}".format(p = p, c = list_classes(p)))
def extract_students(df, no_student_columns = no_student_columns):
""" Extract the list of students from df """
students = df.columns.difference(no_student_columns)
return students
def check_students(dfs, no_student_columns = no_student_columns):
""" Build students list """
dfs_students = [extract_students(df) for df in dfs]
if not are_equal(dfs_students):
raise ValueError("Not same list of students amoung worksheets")
return dfs_students[0]
def are_equal(elems):
""" Test if item of elems are equal
>>> L = [[1, 2, 3], [1, 3, 2], [1, 3, 2]]
>>> are_equal(L)
True
>>> L = [[0, 2, 3], [1, 3, 2], [1, 3, 2]]
>>> are_equal(L)
False
"""
first = sorted(elems[0])
others = [sorted(e) for e in elems[1:]]
diff = [e == first for e in others]
if False in diff:
return False
return True
def flat_df_students(df, students):
""" Flat the ws for students """
flat_df = pd.DataFrame()
flat_data = []
dfT = df.T
for n in dfT:
pre_di = dfT[n][no_student_columns].to_dict()
for e in students:
data = pre_di.copy()
data["Eleve"] = e
data["Note"] = dfT[n].loc[e]
flat_data.append(data)
return pd.DataFrame.from_dict(flat_data)
def parse_sheets(ws,
marks_sheetnames = ["Notes", "Connaissances", "Calcul mental"]):
""" Parse sheets from marks_sheetnames
:param ws: the worksheet
:param marks_sheetnames: names of sheets for extracting
"""
sheets = []
for sheetname in marks_sheetnames:
try:
sheets.append(ws.parse(sheetname))
except xlrd.biffh.XLRDError:
pass
return sheets
def extract_flat_marks(ws,
marks_sheetnames=["Notes", "Connaissances", "Calcul mental"]):
""" Extract, flat and contact marks from the worksheet
:param ws: the worksheet
:param marks_sheetnames: name of worksheets
:returns: TODO
"""
sheets = parse_sheets(ws, marks_sheetnames)
students = check_students(sheets)
flat_df = pd.DataFrame()
for sheet in sheets:
flat = flat_df_students(sheet, students)
flat_df = pd.concat([flat_df, flat])
flat_df["Question"].fillna("", inplace = True)
flat_df["Exercice"].fillna("", inplace = True)
flat_df["Commentaire"].fillna("", inplace = True)
flat_df["Competence"].fillna("", inplace = True)
return flat_df
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -0,0 +1,116 @@
#!/usr/bin/env python
# encoding: utf-8
from .plottings import radar_graph, pivot_table_to_pie
from .skills_tools import count_levels, count_skill_evaluation
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import logging
logger = logging.getLogger(__name__)
__all__ = ["radar_on",
"pie_pivot_table",
"marks_hist",
"parallel_on",
]
def radar_on(df, index, optimum = None):
""" Plot the radar graph concerning index column of the df
:param df: DataFrame with index and "Normalized" column
:returns: exes with radar plot
"""
comp_pt = pd.pivot_table(df,
index = [index],
values = ["Normalized"],
aggfunc=np.mean,
)
labels = list(comp_pt.index)
values = [i[0] for i in comp_pt.values]
if optimum is None:
optimum = [1]*len(values)
fig, ax = radar_graph(labels, values, optimum)
return fig, ax
def pie_pivot_table(df, pies_per_lines = 3, **kwargs):
""" Plot a pie plot of the pivot_table of df
:param df: the dataframe.
:param pies_per_lines: Number of pies per line.
:param kwargs: arguments to pass to pd.pivot_table.
"""
logger.debug(f"pie_pivot_table avec les arguments {kwargs}")
pv = pd.pivot_table(df, **kwargs)
return pivot_table_to_pie(pv, pies_per_lines)
def marks_hist(df, **kwargs):
""" Return axe for the histogramme of the dataframe
:param df: Dataframe with "Mark" and "Bareme" columns. If it has "Nom" column, it is use in title.
:param kwargs: argument to pass to hist
"""
bareme = df["Bareme"].max()
bins = int(bareme*2)
ax = df["Mark"].hist(bins = bins, range=(0,bareme), **kwargs)
try:
nom = df["Nom"].unique()
except KeyError:
title="Histogramme"
else:
title="Histogramme pour {}".format(" ".join(nom))
ax.set_title(title)
return ax
def hist_boxplot(df, kwargs_hist=[], kwargs_box=[]):
f, (ax_hist, ax_box) = plt.subplots(2, sharex=True,
gridspec_kw={"height_ratios": (.85, .15)})
marks_hist(df, ax = ax_hist, rwidth=0.9)
ev_desc = df["Mark"].describe()
m = round(ev_desc["mean"], 1)
ax_hist.plot([m,m], ax_hist.get_ylim())
ax_hist.annotate(round(ev_desc["mean"],1),
xy=(ev_desc["mean"] + 0.2, ax_hist.get_ylim()[1]-0.2))
df["Mark"].plot.box(ax = ax_box, vert=False, widths = 0.6)
ax_box.set_yticklabels("")
for e in ["min", "25%", "50%", "75%", "max"]:
ax_box.annotate(round(ev_desc[e], 1),
xy=(ev_desc[e] - 0.2, ax_box.get_ylim()[1]))
return f, (ax_hist, ax_box)
def parallel_on(df, index, student=None):
""" Plot parallel one line by student
:param df: TODO
:param index: TODO
:returns: TODO
"""
pt = pd.pivot_table(df,
index = [index],
values = ["Normalized"],
columns = ["Eleve"],
aggfunc = np.mean,
)["Normalized"]
ax = pt.plot(color="b", figsize=(10,5), legend=False)
pt.T.describe().T[["min", "25%","50%", "75%", "max"]].plot(ax=ax,
kind='area', stacked=False, alpha=0.2)
if not student is None:
pt.ix[:,student].plot(ax=ax, color="r")
return ax
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

105
Repytex/tools/plottings.py Normal file
View File

@@ -0,0 +1,105 @@
#!/usr/bin/env python
# encoding: utf-8
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.path import Path
from matplotlib.spines import Spine
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection
plt.style.use('ggplot')
def _radar_factory(num_vars):
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
theta += np.pi/2
def unit_poly_verts(theta):
x0, y0, r = [0.5] * 3
verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
return verts
class RadarAxes(PolarAxes):
name = 'radar'
RESOLUTION = 1
def fill(self, *args, **kwargs):
closed = kwargs.pop('closed', True)
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)
def plot(self, *args, **kwargs):
lines = super(RadarAxes, self).plot(*args, **kwargs)
for line in lines:
self._close_line(line)
def _close_line(self, line):
x, y = line.get_data()
# FIXME: markers at x[0], y[0] get doubled-up
if x[0] != x[-1]:
x = np.concatenate((x, [x[0]]))
y = np.concatenate((y, [y[0]]))
line.set_data(x, y)
def set_varlabels(self, labels):
self.set_thetagrids(theta * 180/np.pi, labels)
def _gen_axes_patch(self):
verts = unit_poly_verts(theta)
return plt.Polygon(verts, closed=True, edgecolor='k')
def _gen_axes_spines(self):
spine_type = 'circle'
verts = unit_poly_verts(theta)
verts.append(verts[0])
path = Path(verts)
spine = Spine(self, spine_type, path)
spine.set_transform(self.transAxes)
return {'polar': spine}
register_projection(RadarAxes)
return theta
def radar_graph(labels = [], values = [], optimum = []):
N = len(labels)
theta = _radar_factory(N)
max_val = max(max(optimum), max(values))
fig = plt.figure(figsize=(3,3))
ax = fig.add_subplot(1, 1, 1, projection='radar')
ax.plot(theta, values, color='k')
ax.plot(theta, optimum, color='r')
ax.set_varlabels(labels)
return fig, ax
def my_autopct(values):
def my_autopct(pct):
total = sum(values)
val = int(round(pct*total/100.0))
return f'{val}'
return my_autopct
def pivot_table_to_pie(pv, pies_per_lines = 3):
nbr_pies = len(pv.columns)
nbr_cols = pies_per_lines
nbr_rows = nbr_pies // nbr_cols + 1
f, axs = plt.subplots(nbr_rows, nbr_cols, figsize = (4*nbr_cols,4*nbr_rows))
for (c, ax) in zip(pv, axs.flatten()):
datas = pv[c]
explode = [0.1]*len(datas)
pv[c].plot(kind="pie",
ax=ax,
use_index = False,
title = f"{c} (total={datas.sum()})",
legend = False,
autopct=my_autopct(datas),
explode = explode,
)
ax.set_ylabel("")
for i in range(nbr_pies//nbr_cols, nbr_cols*nbr_rows):
axs.flat[i].axis("off")
return (f, axs)
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -0,0 +1,41 @@
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2017 lafrite <lafrite@Poivre>
#
# Distributed under terms of the MIT license.
"""
Skills are "competence" and "domaine" (which is program elements)!
Thoses tools are made to ease their manipulation
"""
__all__ = []
def count_levels(df, skill):
""" Counts Levels of skill
:param df: dataframe with skill, Level and Trimestre columns
:param skill: "Competence" or "Domaine"
:returns: Datafram (lines -> skills and columns -> levels)
"""
# TODO: Trimestre est arbitraire |mar. mars 7 17:55:16 EAT 2017
return df.groupby([skill, "Level"]).count()["Trimestre"].unstack()
def count_skill_evaluation(df, skill):
""" Count how many times the skill has been evaluated
:param df: dataframe with skill, Level and Trimestre columns
:param skill: "Competence" or "Domaine"
"""
return count_levels(df, skill).T.sum()
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

196
Repytex/tools/term.py Normal file
View File

@@ -0,0 +1,196 @@
#!/usr/bin/env python
# encoding: utf-8
import pandas as pd
import numpy as np
from notes_tools.tools.marks_plottings import (pie_pivot_table,
parallel_on,
radar_on,
)
import seaborn as sns
__all__ = ["students_pov", "class_pov"]
class Student(object):
"""
Informations on a student which can be use inside template.
Those informations should not be modify or use for compute analysis otherwise they won't be spread over other POV.
"""
def __init__(self, quest_df, exo_df, eval_df):
"""
Description of a student from quest, exo and eval
"""
name = {*quest_df["Eleve"].unique(),
*exo_df["Eleve"].unique(),
*eval_df["Eleve"].unique(),
}
if len(name) != 1:
raise ValueError("Can't initiate Student: dfs contains different student names")
self.name = name.pop()
self.quest_df = quest_df
self.exo_df = exo_df
self.eval_df = eval_df
@property
def marks_tabular(self):
""" Latex tabular with all of his marks of the term """
try:
self._marks_tabular
except AttributeError:
self._marks_tabular = self.eval_df[["Nom", "Mark_barem"]]
self._marks_tabular.columns = ["Devoir", "Note"]
return self._marks_tabular.to_latex()
@property
def pies_on_competence(self):
""" Pies chart on competences """
return pie_pivot_table(self.quest_df,
index = "Level",
columns = "Competence",
values = "Eleve",
aggfunc = len,
fill_value = 0,
)
@property
def pies_on_domaine(self):
""" Pies chart on domaines """
return pie_pivot_table(self.quest_df,
index = "Level",
columns = "Domaine",
values = "Eleve",
aggfunc = len,
fill_value = 0,
)
@property
def radar_on_competence(self):
""" Radar plot on competence """
return radar_on(self.quest_df,
"Competence")
@property
def radar_on_domaine(self):
""" Radar plot on domaine """
return radar_on(self.quest_df,
"Domaine")
@property
def heatmap_on_domain(self):
""" Heatmap over evals on domains """
comp = pd.pivot_table(self.quest_df,
index = "Domaine",
columns = ["Date","Nom"],
values = ["Normalized"],
aggfunc = np.mean,
)
comp.columns = [i[1].strftime("%Y-%m-%d") + "\n" + i[2] for i in comp.columns]
return sns.heatmap(comp)
@property
def heatmap_on_competence(self):
""" Heatmap over evals on competences """
comp = pd.pivot_table(self.quest_df,
index = "Competence",
columns = ["Date","Nom"],
values = ["Normalized"],
aggfunc = np.mean,
)
comp.columns = [i[1].strftime("%Y-%m-%d") + "\n" + i[2] for i in comp.columns]
return sns.heatmap(comp)
def parallel_on_evals(self, classe_evals):
""" Parallel coordinate plot of the class with student line highlight """
return parallel_on(classe_evals, "Nom", self.name)
class Classe(object):
"""
Informations on a class which can be use inside template.
Those informations should not be modify or use for compute analysis otherwise they won't be spread over other POV.
"""
def __init__(self, quest_df, exo_df, eval_df):
""" Init of a class from quest, exo and eval """
self.quest_df = quest_df
self.exo_df = exo_df
self.eval_df = eval_df
@property
def evals_tabular(self):
""" Summary of all evaluations for all students """
try:
self._evals_tabular
except AttributeError:
self._evals_tabular = pd.pivot_table(self.eval_df,
index = "Eleve",
columns = "Nom",
values = "Mark_barem",
aggfunc = lambda x: " ".join(x)).to_latex()
return self._evals_tabular
@property
def parallel_on_evals(self):
""" Parallel coordinate plot of the class """
return parallel_on(self.eval_df, "Nom")
@property
def pies_eff_pts_on_competence(self):
""" Pie charts on competence with repartition of evaluated times and attributed points """
return pie_pivot_table(self.quest_df[["Competence", "Bareme", "Exercice", "Question", "Commentaire"]].drop_duplicates(),
index = "Competence",
#columns = "Level",
values = "Bareme",
aggfunc=[len,np.sum],
fill_value=0)
@property
def pies_eff_pts_on_domaine(self):
""" Pie charts on domaine with repartition of evaluated times and attributed points """
return pie_pivot_table(self.quest_df[["Domaine", "Bareme", "Exercice", "Question", "Commentaire"]].drop_duplicates(),
index = "Domaine",
#columns = "Level",
values = "Bareme",
aggfunc=[len,np.sum],
fill_value=0)
def select(quest_df, exo_df, eval_df, index, value):
""" Return quest, exo and eval rows which correspond index == value
:param quest_df: TODO
:param exo_df: TODO
:param eval_df: TODO
"""
qu = quest_df[quest_df[index] == value]
exo = exo_df[exo_df[index] == value]
ev = eval_df[eval_df[index] == value]
return qu, exo, ev
def students_pov(quest_df, exo_df, eval_df):
es = []
for e in eval_df["Eleve"].unique():
d = select(quest_df, exo_df, eval_df, "Eleve", e)
eleve = Student(*d)
es.append(eleve)
return es
def class_pov(quest_df, exo_df, eval_df):
return Classe(quest_df, exo_df, eval_df)
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -0,0 +1,62 @@
#!/usr/bin/env python
# encoding: utf-8
from notes_tools.tools import df_marks_manip
import pandas
def test_round_half_point():
assert df_marks_manip.round_half_point(2) == 2
assert df_marks_manip.round_half_point(2.1) == 2.5
assert df_marks_manip.round_half_point(2.4) == 2.5
assert df_marks_manip.round_half_point(2.6) == 3
assert df_marks_manip.round_half_point(2.9) == 3
assert df_marks_manip.round_half_point(pandas.np.nan)
def test_note_to_rep():
d = {"Niveau": 1, "Note": 0}
assert df_marks_manip.note_to_rep(d) == "\\RepZ"
d = {"Niveau": 1, "Note": 1}
assert df_marks_manip.note_to_rep(d) == "\\RepU"
d = {"Niveau": 1, "Note": 2}
assert df_marks_manip.note_to_rep(d) == "\\RepD"
d = {"Niveau": 1, "Note": 3}
assert df_marks_manip.note_to_rep(d) == "\\RepT"
d = {"Niveau": 1, "Note": None}
assert df_marks_manip.note_to_rep(d) == "\\NoRep"
d = {"Niveau": 1, "Note": pandas.np.nan}
assert df_marks_manip.note_to_rep(d) == "\\NoRep"
d = {"Niveau": 0, "Note": "plop"}
assert df_marks_manip.note_to_rep(d) == "plop"
d = {"Niveau": 0, "Note": 1}
assert df_marks_manip.note_to_rep(d) == 1
def test_note_to_mark():
d = {"Niveau": 1, "Note": 0, "Bareme": 6}
assert df_marks_manip.note_to_mark(d) == 6/3*0
d = {"Niveau": 1, "Note": 1, "Bareme": 6}
assert df_marks_manip.note_to_mark(d) == 6/3*1
d = {"Niveau": 1, "Note": 2, "Bareme": 6}
assert df_marks_manip.note_to_mark(d) == 6/3*2
d = {"Niveau": 1, "Note": 3, "Bareme": 6}
assert df_marks_manip.note_to_mark(d) == 6/3*3
d = {"Niveau": 0, "Note": 3, "Bareme": 6}
assert df_marks_manip.note_to_mark(d) == 3
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del

View File

@@ -0,0 +1,59 @@
#!/usr/bin/env python
# encoding: utf-8
from notes_tools.tools import extract
import pandas
import pytest
sample_path = "./samples/"
def test_list_classes():
clss = extract.list_classes(sample_path)
assert clss == ["503", "312", "308"]
def test_get_class_ws_raise():
with pytest.raises(Exception) as e_info:
extract.get_class_ws("312")
def test_parse_sheets():
ws = extract.get_class_ws("312", sample_path)
sheets = extract.parse_sheets(ws)
assert len(sheets) == 2
assert type(sheets[0]) == pandas.core.frame.DataFrame
def test_extract_students():
ws = extract.get_class_ws("312", sample_path)
sheets = extract.parse_sheets(ws)
students = extract.extract_students(sheets[0])
_students = pandas.Index(['Eleve 1', 'Eleve 10', 'Eleve 2', 'Eleve 3', 'Eleve 4', 'Eleve 5', 'Eleve 6', 'Eleve 7', 'Eleve 8', 'Eleve 9'], dtype='object')
assert list(students) == list(_students)
def test_check_students():
ws = extract.get_class_ws("312", sample_path)
sheets = extract.parse_sheets(ws)
students = extract.check_students(sheets)
_students = pandas.Index(['Eleve 1', 'Eleve 10', 'Eleve 2', 'Eleve 3', 'Eleve 4', 'Eleve 5', 'Eleve 6', 'Eleve 7', 'Eleve 8', 'Eleve 9'], dtype='object')
assert list(students) == list(_students)
ws = extract.get_class_ws("308", sample_path)
sheets = extract.parse_sheets(ws)
with pytest.raises(Exception) as e_info:
students = extract.check_students(sheets)
def test_flat_df_students():
ws = extract.get_class_ws("312", sample_path)
sheets = extract.parse_sheets(ws)
students = extract.check_students(sheets)
# Sheets[1] is the sheet Connaissances
flat_df = extract.flat_df_students(sheets[1], students)
assert len(flat_df) == 80
# -----------------------------
# Reglages pour 'vim'
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
# cursor: 16 del