diff --git a/notes_tools/tools/df_marks_manip.py b/notes_tools/tools/df_marks_manip.py index 60b7538..4ae5162 100644 --- a/notes_tools/tools/df_marks_manip.py +++ b/notes_tools/tools/df_marks_manip.py @@ -287,11 +287,12 @@ def compute_eval_marks(df): >>> df["Mark"] = compute_marks(df) >>> df_exo = compute_exo_marks(df) >>> compute_eval_marks(df_exo) - Eleve Nom Trimestre Bareme Date Mark Exercice Niveau - 0 E1 N1 1 6.0 16/09/2016 5.0 Total 0 - 1 E1 N2 1 4.0 01/10/2016 3.0 Total 0 - 2 E2 N1 1 6.0 16/09/2016 4.5 Total 0 - 3 E2 N2 1 4.0 01/10/2016 3.5 Total 0 + index Eleve Nom Trimestre Bareme Date Mark + 0 0 E1 N1 1 6.0 16/09/2016 5.0 + 1 1 E2 N1 1 6.0 16/09/2016 4.5 + 2 0 E1 N2 1 4.0 01/10/2016 3.0 + 3 1 E2 N2 1 4.0 01/10/2016 3.5 + """ def date_format(dates): @@ -313,12 +314,13 @@ def compute_eval_marks(df): eval_pt = pd.pivot_table(eval_df, index = [ "Eleve", "Nom", "Trimestre"], - values = ["Bareme", "Mark", "Normalized", "Date"], - aggfunc={"Bareme": np.sum, "Mark": np.sum,"Normalized":np.mean, "Date":lambda x:dates[0]}, + values = ["Bareme", "Mark", "Date"], + aggfunc={"Bareme": np.sum, "Mark": np.sum, "Date":lambda x:dates[0]}, ) eval_pt = eval_pt.reset_index() eval_m = pd.concat([eval_m, eval_pt]) + eval_m = eval_m.reset_index() return eval_m @@ -362,12 +364,12 @@ def digest_flat_df(flat_df): 5 E2 N1 Ex2 0.0 0.000 6 E2 N2 Ex1 NaN NaN 7 E2 N2 Ex2 NaN NaN - >>> eval_df[['Eleve', "Nom", "Mark", "Normalized"]] - Eleve Nom Mark Normalized - 0 E1 N1 5.0 0.833333 - 1 E1 N2 3.0 0.750000 - 2 E2 N1 0.0 0.000000 - 3 E2 N2 NaN NaN + >>> eval_df + index Eleve Nom Trimestre Bareme Date Mark Normalized + 0 0 E1 N1 1 6.0 16/09/2016 5.0 0.833333 + 1 1 E2 N1 1 6.0 16/09/2016 0.0 0.000000 + 2 0 E1 N2 1 4.0 01/10/2016 3.0 0.750000 + 3 1 E2 N2 1 4.0 01/10/2016 NaN NaN """ df = flat_df.copy() df["Mark"] = compute_marks(flat_df)