#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2017 lafrite # # Distributed under terms of the MIT license. """ Manipulating rating scale of an evaluation. Those functions are made to be applied over eval_df """ from .df_marks_manip import round_half_point, compute_mark_barem __all__ = [] def new_scale_min(x): """ Change the scale by selecting min between scale and mark """ return min(x["Mark_old"], x["Bareme"]) def new_scale_proportionnal(x): """ Changing the scale proportionally """ return round_half_point(x["Mark_old"] * x["Bareme"] / x["Bareme_old"]) def tranform_scale(eval_df, new_scale, method): """ Change the rating scale of the exam It backups Bareme, Mark, Mark_barem columns adding "_old". The backup is done once then it is ignored. It changes Bareme value to new_scale, applies method to marks and remake mark_bareme :param eval_df: dataframe on evaluations :param new_scale: replacement scale value :param method: "min", "prop" or a function on eval_df rows :returns: the transformed eval_df """ for c in ["Bareme", "Mark", "Mark_barem"]: try: eval_df[c+"_old"] except KeyError: eval_df[c+"_old"] = eval_df[c] eval_df["Bareme"] = new_scale TRANFS = {"min": new_scale_min, "prop": new_scale_proportionnal, } try: t = TRANFS[method] except KeyError: eval_df["Mark"] = eval_df.apply(method) else: eval_df["Mark"] = eval_df.apply(t, axis=1) eval_df["Mark_barem"] = compute_mark_barem(eval_df) return eval_df # ----------------------------- # Reglages pour 'vim' # vim:set autoindent expandtab tabstop=4 shiftwidth=4: # cursor: 16 del