109 lines
3.6 KiB
Python
109 lines
3.6 KiB
Python
#!/usr/bin/env python
|
|
# encoding: utf-8
|
|
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
|
|
def select(quest_df, exo_df, eval_df, evalname):
|
|
""" Return quest, exo and eval rows which correspond to evalname
|
|
|
|
:param quest_df: TODO
|
|
:param exo_df: TODO
|
|
:param eval_df: TODO
|
|
|
|
"""
|
|
qu = quest_df[quest_df["Nom"] == evalname]
|
|
exo = exo_df[exo_df["Nom"] == evalname]
|
|
ev = eval_df[eval_df["Nom"] == evalname]
|
|
return qu, exo, ev
|
|
|
|
def select_contains(quest_df, exo_df, eval_df, name_part):
|
|
""" Return quest, exo and eval rows which contains name_part
|
|
|
|
:param quest_df: TODO
|
|
:param exo_df: TODO
|
|
:param eval_df: TODO
|
|
|
|
"""
|
|
qu = quest_df[quest_df["Nom"].str.contains(name_part)]
|
|
exo = exo_df[exo_df["Nom"].str.contains(name_part)]
|
|
ev = eval_df[eval_df["Nom"].str.contains(name_part)]
|
|
return qu, exo, ev
|
|
|
|
def get_present_absent(eval_df):
|
|
""" Return list of student who where present (Mark > 0) and
|
|
the list of those who weren't
|
|
|
|
"""
|
|
presents = eval_df[eval_df["Mark"] > 0]["Eleve"]
|
|
absents = eval_df[eval_df["Mark"] == 0]["Eleve"]
|
|
return {"presents": presents, "absents": absents}
|
|
|
|
def keep_only_presents(quest_df, exo_df, eval_df, presents):
|
|
""" Return quest, exo and eval rows of presents students """
|
|
qu = quest_df[quest_df["Eleve"].isin(presents)]
|
|
exo = exo_df[exo_df["Eleve"].isin(presents)]
|
|
ev = eval_df[eval_df["Eleve"].isin(presents)]
|
|
return qu, exo, ev
|
|
|
|
def students_pov(quest_df, exo_df, eval_df):
|
|
"""
|
|
|
|
>>> from .df_marks_manip import digest_flat_df
|
|
>>> d = {"Eleve":["E1"]*6 + ["E2"]*6,
|
|
... "Nom": ["N1"]*4+["N2"]*2 + ["N1"]*4+["N2"]*2,
|
|
... "Exercice":["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"] + ["Ex1"]*2+["Ex2"]*2+["Ex1"]+["Ex2"],
|
|
... "Question":["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"] + ["Q1"]+["Q2"]+["Q1"]+["Q2"]+["Q1"]+["Q1"],
|
|
... "Date":["16/09/2016"]*4+["01/10/2016"]*2 + ["16/09/2016"]*4+["01/10/2016"]*2,
|
|
... "Trimestre": ["1"]*12,
|
|
... "Bareme":[1]*2+[2]*2+[2]*2 + [1]*2+[2]*2+[2]*2,
|
|
... "Niveau":[0]*4+[1]*2 + [0]*4+[1]*2,
|
|
... "Note":[1, 0.33, 2, 1.5, 1, 3, 0.666, 1, 1.5, 1, 2, 3],
|
|
... }
|
|
>>> df = pd.DataFrame(d)
|
|
>>> quest_df, exo_df, eval_df = digest_flat_df(df)
|
|
>>> std_pov = students_pov(quest_df, exo_df, eval_df)
|
|
>>> std = std_pov[0]
|
|
>>> std["Nom"]
|
|
'E1'
|
|
>>> "{} / {}".format(std["Total"]["Mark"], std["Total"]["Bareme"])
|
|
'5.0 / 6.0'
|
|
>>> for exo in std["Exercices"]:
|
|
... print("{}: {} / {}".format(exo["Nom"], exo["Total"]["Mark"], exo["Total"]["Bareme"]))
|
|
Ex1: 1.5 / 2.0
|
|
Ex2: 3.5 / 4.0
|
|
>>> exo = std["Exercices"][0]
|
|
>>> for _,q in exo["Questions"].iterrows():
|
|
... print("{} : {}".format(q["Question"], q["Latex_rep"]))
|
|
Q1 : 1.0
|
|
Q2 : 0.33
|
|
Q1 : \RepU
|
|
|
|
"""
|
|
es = []
|
|
for e in eval_df["Eleve"].unique():
|
|
eleve = {"Nom":e}
|
|
e_quest = quest_df[quest_df["Eleve"] == e]
|
|
eleve["quest"] = e_quest
|
|
e_exo = exo_df[exo_df["Eleve"] == e]
|
|
#e_df = ds_df[ds_df["Eleve"] == e][["Exercice", "Question", "Bareme", "Commentaire", "Niveau", "Mark", "Latex_rep"]]
|
|
eleve["Total"] = eval_df[eval_df["Eleve"]==e].iloc[0]
|
|
|
|
exos = []
|
|
for exo in e_exo["Exercice"].unique():
|
|
ex = {"Nom":exo}
|
|
ex["Total"] = e_exo[e_exo["Exercice"]==exo].iloc[0]
|
|
ex["Questions"] = e_quest[e_quest["Exercice"] == exo]
|
|
exos.append(ex)
|
|
eleve["Exercices"] = exos
|
|
|
|
es.append(eleve)
|
|
return es
|
|
|
|
|
|
# -----------------------------
|
|
# Reglages pour 'vim'
|
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
|
# cursor: 16 del
|