119 lines
3.7 KiB
Python
Executable File
119 lines
3.7 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# encoding: utf-8
|
|
|
|
from extract import extract_flat_marks, get_class_ws
|
|
from df_marks_manip import digest_flat_df, students_pov
|
|
from opytex import texenv
|
|
import pandas as pd
|
|
import numpy as np
|
|
import optparse
|
|
import xlrd
|
|
|
|
notStudent = ["Trimestre", "Nom", "Date", "Exercice", "Question", "Competence", "Domaine", "Commentaire", "Bareme", "Niveau"]
|
|
pure_marks = ["Malus", "Bonus", "Presentation"]
|
|
|
|
def extract_students(df, notStudent = notStudent):
|
|
""" Extract the list of students from df """
|
|
students = df.columns.difference(notStudent)
|
|
return students
|
|
|
|
def build_students(df1, df2, notStudent = notStudent):
|
|
""" Build students list """
|
|
students_from_notes = extract_students(df1, notStudent)
|
|
students_from_conn = extract_students(df2, notStudent)
|
|
if students_from_conn.equals(students_from_notes):
|
|
return students_from_conn
|
|
else:
|
|
raise ValueError("Not same list of students between df1 = {} ans df2 = {}".format(df1, df2))
|
|
|
|
def flat_df_students(df, students):
|
|
""" Flat the ws for students """
|
|
flat_df = pd.DataFrame()
|
|
flat_data = []
|
|
dfT = df.T
|
|
for n in dfT:
|
|
pre_di = dfT[n][notStudent].to_dict()
|
|
for e in students:
|
|
data = pre_di.copy()
|
|
data["Eleve"] = e
|
|
data["Note"] = dfT[n].loc[e]
|
|
flat_data.append(data)
|
|
return pd.DataFrame.from_dict(flat_data)
|
|
|
|
def select_ds(ds_name, flat_df):
|
|
"""TODO: Docstring for select_ds.
|
|
|
|
:param ds_name: TODO
|
|
:param flat_df: TODO
|
|
:returns: TODO
|
|
|
|
"""
|
|
ds = flat_df[flat_df["Nom"] == ds_name]
|
|
if len(ds) == 0:
|
|
raise ValueError("{} is not a registered evaluation".format(ds_name))
|
|
return ds
|
|
|
|
def build_ds_info(classe, ds_df):
|
|
"""TODO: Docstring for build_ds_info.
|
|
|
|
:param ds_df: TODO
|
|
:returns: TODO
|
|
|
|
|
|
# TODO: vérifier que toutes ces informations soient identiques sur les lignes |dim. nov. 6 16:06:58 EAT 2016
|
|
"""
|
|
ds_info = {}
|
|
ds_info["Classe"] = classe
|
|
ds_info["Nom"] = ds_df["Nom"].unique()[0]
|
|
ds_info["Date"] = pd.to_datetime(ds_df["Date"].unique()[0]).strftime("%d-%m-%Y")
|
|
ds_info["Trimestre"] = ds_df["Trimestre"].unique()[0]
|
|
return ds_info
|
|
|
|
def build_target_name(classe, ds_name):
|
|
return "./" + classe + "/bilan_" + ds_name + ".tex"
|
|
|
|
def feed_bilan(target, datas, template = "./tpl_bilan.tex"):
|
|
""" get the template and feed it to create bilans
|
|
|
|
:param ???:
|
|
:param datas: dictonnary to feed the template
|
|
:param template: the template
|
|
"""
|
|
bilan = texenv.get_template(template)
|
|
with open(target, "w") as f:
|
|
f.write(bilan.render(**datas))
|
|
print("{} est construit! Ya plus qu'à compiler!".format(target))
|
|
|
|
def build_bilan(classe, ds_name):
|
|
ws = get_class_ws(classe)
|
|
|
|
flat_df = extract_flat_marks(ws)
|
|
quest_df, exo_df, eval_df = digest_flat_df(flat_df)
|
|
|
|
quest_df = select_ds(ds_name, quest_df)
|
|
exo_df = select_ds(ds_name, exo_df)
|
|
eval_df = select_ds(ds_name, eval_df)
|
|
|
|
ds_info = build_ds_info(classe, eval_df)
|
|
students_df = students_pov(quest_df, exo_df, eval_df)
|
|
|
|
datas = {"ds_info": ds_info, "students":students_df}
|
|
|
|
target = build_target_name(classe, ds_name)
|
|
feed_bilan(target, datas)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = optparse.OptionParser()
|
|
parser.add_option("-c","--classe",action="store",type="string",dest="classe", help="The classe")
|
|
parser.add_option("-e","--evaluation",action="store",type="string",dest="ds_name", help="The evaluation name.")
|
|
(options, args) = parser.parse_args()
|
|
|
|
build_bilan(options.classe, options.ds_name)
|
|
|
|
|
|
# -----------------------------
|
|
# Reglages pour 'vim'
|
|
# vim:set autoindent expandtab tabstop=4 shiftwidth=4:
|
|
# cursor: 16 del
|