2014-2015/2nd/Proba_stat/Proba/Cours/probabilites.tex

113 lines
3.0 KiB
TeX
Raw Permalink Normal View History

2017-06-16 06:48:07 +00:00
\documentclass[a4paper,10pt]{/media/documents/Cours/Prof/Enseignements/2014-2015/tools/style/classCours}
\usepackage{/media/documents/Cours/Prof/Enseignements/2014-2015/2014_2015}
% Title Page
\titre{Probabilités}
% \quatreC \quatreD \troisB \troisPro
\classe{\seconde}
\date{Septembre 2014}
\begin{document}
\maketitle
\section{Vocabulaire}
\begin{Def}
\begin{itemize}
\item Une expérience est dite aléatoire quand le résultat n'est pas prévisible.
\item Une issue d'une expérience aléatoire est un résultat de cette expérience.
\item L'univers est l'ensemble des issues. On ne note $\Omega$.
\end{itemize}
\end{Def}
\begin{Ex}
\begin{itemize}
\item Lancé de dés
\item Jeu de carte
\item Lancé de pièce
\end{itemize}
\end{Ex}
\begin{Def}
\begin{itemize}
\item Un ensemble d'issues est un évènement.
\item Une évènement qui contient une seule issue est un évènement élémentaire.
\item Un évènement qui contient toutes les issues est un évènement certain.
\item Un évènement qui ne contient aucune issue est un évènement impossible.
\end{itemize}
\end{Def}
\begin{Ex}
\begin{itemize}
\item Reprise des exemples précédents
\end{itemize}
\end{Ex}
\section{Probabilité}
\begin{Def}
Définir une probabilité, c'est associer à chaque issue un nombre $p$ compris entre 0 et 1 de sorte que la somme de toutes les ces nombres soit égale à 1.
\end{Def}
\begin{Ex}
Tableau avec un dé équilibré
Tableau avec la somme de 2 dés
\end{Ex}
\begin{Def}
La probabilité d'un évènement est la somme des probabilités des issues qui le composent.
\end{Def}
\paragraph{Notation:} On notera $P(A)$ la probabilité de l'évènement A
\begin{Ex}
Probabilité d'obtenir un chiffre pair.
\end{Ex}
\begin{Rmq}
Si l'on répète de nombreuse fois l'expérience et que l'on calcul la fréquence d'apparition d'un évènement, alors la Probabilité de cet évènement sera égal à cette fréquence.
\end{Rmq}
C'est ce qu'ils ont eut au brevet en 2013-2014...
\begin{Def}
On est dans une situation d'équiprobabilité quand toutes les issues de l'univers ont la même probabilité.
\end{Def}
\begin{Ex}
Les exemples: Dés, cartes, pièces.
Les contre-exemples: dés pipés,
\end{Ex}
\begin{Def}
Si l'on est en situation d'équiprobabilité, alors
\begin{itemize}
\item La probabilité d'un évènement élémentaire est
\begin{eqnarray*}
\frac{1}{\mbox{Nombre d'éléments de l'univers}}
\end{eqnarray*}
\item La probabilité d'un évènement $A$ est
\begin{eqnarray*}
\frac{\mbox{Nombre d'éléments dans $A$}}{\mbox{Nombre d'éléments dans l'univers}}
\end{eqnarray*}
\end{itemize}
\end{Def}
\section{Répétition d'expériences}
Un exemple d'arbre où l'on effectue deux ou trois fois une expérience.
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: