2014-2015/1er_STMG/DS/DS_0320/Bilan/Bilan DS_0320.ipynb

323 lines
14 KiB
Plaintext
Raw Normal View History

2017-06-16 06:48:07 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 87,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pandas as pd\n",
"from texenv import texenv\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes = pd.read_excel(\"./../../../notes_1stmg.xls\",sheetname=\"DS_0320\")"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Index(['DS_0320', 'av_arrondi', 'Exercice 1', '1 (double inclusion)', '2 (double inclusion)', '3 (proportion)', 'Exercice 2', '1 (Remplir tableau)', '2.a (calculer proportion)', '2.b (calculer proportion)', '2.c (proportion parmi)', '2.d (proportion parmi)', 'Exercice 3', '1 (completer arbre)', '2.a (proportion feuille)', '2.b (proportion feuille)', '2.c (proportion ou)', '3 (calculer quantité)', 'Exercice 4', '1 (tracer fonction)', '2 (maximum)'], dtype='object')"
]
},
"execution_count": 89,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes.index"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"notes = notes.T"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes = notes.drop(\"av_arrondi\", axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"barem = notes[:1]\n",
"notes = notes[1:]"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes = notes[notes[\"DS_0320\"].notnull()]"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {
"collapsed": false
},
"outputs": [
{
"ename": "ValueError",
"evalue": "could not convert string to float: ",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-94-7ea0c14a88f0>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mnotes\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnotes\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;32m/home/lafrite/.virtualenvs/data_analysis/lib/python3.4/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mastype\u001b[1;34m(self, dtype, copy, raise_on_error)\u001b[0m\n\u001b[0;32m 2212\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2213\u001b[0m mgr = self._data.astype(\n\u001b[1;32m-> 2214\u001b[1;33m dtype=dtype, copy=copy, raise_on_error=raise_on_error)\n\u001b[0m\u001b[0;32m 2215\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_constructor\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmgr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__finalize__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2216\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m/home/lafrite/.virtualenvs/data_analysis/lib/python3.4/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mastype\u001b[1;34m(self, dtype, **kwargs)\u001b[0m\n\u001b[0;32m 2500\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2501\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2502\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'astype'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2503\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2504\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mconvert\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m/home/lafrite/.virtualenvs/data_analysis/lib/python3.4/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mapply\u001b[1;34m(self, f, axes, filter, do_integrity_check, **kwargs)\u001b[0m\n\u001b[0;32m 2455\u001b[0m copy=align_copy)\n\u001b[0;32m 2456\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2457\u001b[1;33m \u001b[0mapplied\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mb\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2458\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2459\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mapplied\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m/home/lafrite/.virtualenvs/data_analysis/lib/python3.4/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mastype\u001b[1;34m(self, dtype, copy, raise_on_error, values)\u001b[0m\n\u001b[0;32m 369\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mraise_on_error\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 370\u001b[0m return self._astype(dtype, copy=copy, raise_on_error=raise_on_error,\n\u001b[1;32m--> 371\u001b[1;33m values=values)\n\u001b[0m\u001b[0;32m 372\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 373\u001b[0m def _astype(self, dtype, copy=False, raise_on_error=True, values=None,\n",
"\u001b[1;32m/home/lafrite/.virtualenvs/data_analysis/lib/python3.4/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36m_astype\u001b[1;34m(self, dtype, copy, raise_on_error, values, klass)\u001b[0m\n\u001b[0;32m 399\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mvalues\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 400\u001b[0m \u001b[1;31m# _astype_nansafe works fine with 1-d only\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 401\u001b[1;33m \u001b[0mvalues\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_astype_nansafe\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 402\u001b[0m \u001b[0mvalues\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 403\u001b[0m newb = make_block(values,\n",
"\u001b[1;32m/home/lafrite/.virtualenvs/data_analysis/lib/python3.4/site-packages/pandas/core/common.py\u001b[0m in \u001b[0;36m_astype_nansafe\u001b[1;34m(arr, dtype, copy)\u001b[0m\n\u001b[0;32m 2627\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2628\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2629\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0marr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2630\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0marr\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mview\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2631\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mValueError\u001b[0m: could not convert string to float: "
]
}
],
"source": [
"notes = notes.astype(float)"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"count 31\n",
"unique 18\n",
"top 11\n",
"freq 5\n",
"Name: DS_0320, dtype: float64"
]
},
"execution_count": 95,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes['DS_0320'].describe()"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"list_exo = [\"Exercice 1\", \"Exercice 2\", \"Exercice 3\", \"Exercice 4\"]"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes[list_exo] = notes[list_exo].applymap(lambda x:round(x,2))"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def toRepVal(val):\n",
" if pd.isnull(val):\n",
" return \"\\\\NoRep\"\n",
" elif val == 0:\n",
" return \"\\\\RepZ\"\n",
" elif val == 1:\n",
" return \"\\\\RepU\"\n",
" elif val == 2:\n",
" return \"\\\\RepD\"\n",
" elif val == 3:\n",
" return \"\\\\RepT\"\n",
" else:\n",
" return val"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"['1 (double inclusion)',\n",
" '2 (double inclusion)',\n",
" '3 (proportion)',\n",
" '1 (Remplir tableau)',\n",
" '2.a (calculer proportion)',\n",
" '2.b (calculer proportion)',\n",
" '2.c (proportion parmi)',\n",
" '2.d (proportion parmi)',\n",
" '1 (completer arbre)',\n",
" '2.a (proportion feuille)',\n",
" '2.b (proportion feuille)',\n",
" '2.c (proportion ou)',\n",
" '3 (calculer quantité)',\n",
" '1 (tracer fonction)',\n",
" '2 (maximum)']"
]
},
"execution_count": 99,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sous_exo = [i for i in notes.T.index if i not in list_exo + ['DS_0320']]\n",
"sous_exo"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes[sous_exo] = notes[sous_exo].applymap(toRepVal)"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Index(['DS_0320', 'Exercice 1', '1 (double inclusion)', '2 (double inclusion)', '3 (proportion)', 'Exercice 2', '1 (Remplir tableau)', '2.a (calculer proportion)', '2.b (calculer proportion)', '2.c (proportion parmi)', '2.d (proportion parmi)', 'Exercice 3', '1 (completer arbre)', '2.a (proportion feuille)', '2.b (proportion feuille)', '2.c (proportion ou)', '3 (calculer quantité)', 'Exercice 4', '1 (tracer fonction)', '2 (maximum)'], dtype='object')"
]
},
"execution_count": 101,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes.T.index"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"bilan = texenv.get_template(\"tpl_bilan.tex\")\n",
"with open(\"./bilan.tex\",\"w\") as f:\n",
" f.write(bilan.render(eleves = notes, barem = barem))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}