170 lines
5.6 KiB
TeX
170 lines
5.6 KiB
TeX
|
\documentclass[a4paper,12pt, table]{/media/documents/Cours/Prof/Enseignements/2014-2015/Archive/2014-2015/tools/style/classDS}
|
||
|
\usepackage{/media/documents/Cours/Prof/Enseignements/2014-2015/Archive/2014-2015/2014_2015}
|
||
|
|
||
|
% Title Page
|
||
|
\titre{DM7}
|
||
|
% \seconde \premiereS \PSTMG \TSTMG
|
||
|
\classe{\premiereS}
|
||
|
\date{28 mai 2015}
|
||
|
%\duree{1 heure}
|
||
|
\sujet{4}
|
||
|
% DS DSCorr DM DMCorr Corr
|
||
|
\typedoc{DM}
|
||
|
|
||
|
%\printanswers
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\maketitle
|
||
|
|
||
|
Le barème est donné à titre indicatif, il pourra être modifié. Vous rendrez le sujet avec la copie.
|
||
|
|
||
|
\begin{questions}
|
||
|
\question
|
||
|
\begin{parts}
|
||
|
\part Dessiner un cercle trigonométrique et y placer les angles suivants (détailler les calculs si vous utilisez la mesure principale de l'angle)
|
||
|
\begin{multicols}{2}
|
||
|
\begin{parts}
|
||
|
|
||
|
|
||
|
\part $\alpha = \frac{-1\pi}{2}$
|
||
|
|
||
|
|
||
|
\part $\beta= \frac{-2\pi}{4}$
|
||
|
|
||
|
|
||
|
\part $\delta = \frac{18\pi}{4}$
|
||
|
|
||
|
|
||
|
\part $\sigma = \frac{26\pi}{3}$
|
||
|
\end{parts}
|
||
|
\end{multicols}
|
||
|
\begin{solution}
|
||
|
\begin{tikzpicture}
|
||
|
\cercleTrigo
|
||
|
\draw (-90.0:1) node[rotate = -90.0] {-} node[above] {$\alpha$};
|
||
|
\draw (-90.0:1) node[rotate = -90.0] {-} node[below] {$\beta$};
|
||
|
\draw (810.0:1) node[rotate = 810.0] {-} node[right] {$\delta$};
|
||
|
\draw (1560.0:1) node[rotate = 1560.0] {-} node[left] {$\sigma$};
|
||
|
|
||
|
|
||
|
\end{tikzpicture}
|
||
|
|
||
|
\end{solution}
|
||
|
|
||
|
|
||
|
|
||
|
\part On pose $||\vec{u}|| = 3 $, $||\vec{v}|| = 5 $ et $\vec{u}.\vec{v} = -9.0$ calculer les quantités suivantes
|
||
|
|
||
|
\begin{multicols}{2}
|
||
|
\begin{subparts}
|
||
|
\subpart $(\vec{u} - 2 \vec{v})(\vec{v} + 5 \vec{u})$
|
||
|
\subpart $||5\vec{u} - 2 \vec{v}||$
|
||
|
\end{subparts}
|
||
|
|
||
|
\end{multicols}
|
||
|
|
||
|
\end{parts}
|
||
|
|
||
|
\question
|
||
|
|
||
|
|
||
|
|
||
|
\begin{parts}
|
||
|
\part Déterminer le domaine de définition des fonctions suivantes
|
||
|
% Il y aura toujours 2 racines
|
||
|
|
||
|
% Il y aura toujours 2 racines
|
||
|
|
||
|
% Il y aura toujours une valeur interdite à ajouter
|
||
|
|
||
|
\begin{multicols}{3}
|
||
|
\begin{subparts}
|
||
|
\subpart $f:x \mapsto \dfrac{1}{4 x^{ 2 } - 10 x + 7}$
|
||
|
\subpart $g:x\mapsto \dfrac{1}{9 \sqrt{x} - 8}$
|
||
|
\subpart $h:x \mapsto \sqrt{- 5 x^{ 2 } + 3 x + 1}$
|
||
|
\end{subparts}
|
||
|
\end{multicols}
|
||
|
\begin{solution}
|
||
|
\begin{enumerate}
|
||
|
\item
|
||
|
On constate que $f$ est une fonction de la forme
|
||
|
\begin{eqnarray*}
|
||
|
f(x) = \frac{1}{u(x)} &\mbox{ avec }& u(x) = 4 x^{ 2 } - 10 x + 7
|
||
|
\end{eqnarray*}
|
||
|
Comme $u(x)$ est un polynôme, son domaine de définition est $D_u = \R$. Il faut maintenant déterminer les valeurs de $x$ tels que $u(x) = 0$.
|
||
|
|
||
|
On résout l'équation $4 x^{ 2 } - 10 x + 7 = 0$:
|
||
|
|
||
|
|
||
|
On commence par calculer le discriminant de $P(x) = 4 x^{ 2 } - 10 x + 7$.
|
||
|
\begin{eqnarray*}
|
||
|
\Delta & = & b^2-4ac \\
|
||
|
\Delta & = & ( -10 )^{ 2 } - 4 \times 4 \times 7 \\
|
||
|
\Delta & = & 100 - 4 \times 28 \\
|
||
|
\Delta & = & 100 - 112 \\
|
||
|
\Delta & = & -12
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
|
||
|
Alors $\Delta = -12 < 0$ donc $P$ n'a pas de racine donc l'équation $4 x^{ 2 } - 10 x + 7 = 0$ n'a pas de solution.
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
Donc finalement, $f$ est définie sur $D_f = \R \backslash \left\{ , \right\}$.
|
||
|
|
||
|
\end{enumerate}
|
||
|
\end{solution}
|
||
|
\part Soit $f$ un fonction définie par
|
||
|
|
||
|
|
||
|
|
||
|
\begin{eqnarray*}
|
||
|
f:x\mapsto \frac{- x^{ 2 } + 8 x - 8}{- 3 x + 4}
|
||
|
\end{eqnarray*}
|
||
|
\begin{subparts}
|
||
|
\subpart Déterminer le domaine de définition de $f$
|
||
|
|
||
|
\subpart Démontrer que la dérivé de $f$ est $f('x) = \dfrac{3 x^{ 2 } - 8 x + 8}{(- 3 x + 4)^2}$
|
||
|
\subpart Étudier le signe de $f$.
|
||
|
\subpart Calculer l'équation de la tangente à $\mathcal{C}_f$ (la courbe représentative de $f$) au point d'abscisse $x = 1$.
|
||
|
\end{subparts}
|
||
|
|
||
|
\end{parts}
|
||
|
|
||
|
|
||
|
\question
|
||
|
|
||
|
|
||
|
|
||
|
Soit $(u_n)$ la suite définie sur $\N$ par
|
||
|
\begin{eqnarray*}
|
||
|
u_0 = 1 \hspace{2cm} u_{n+1} = - 10 u_n - 2
|
||
|
\end{eqnarray*}
|
||
|
\begin{parts}
|
||
|
\part Calculer les 4 premiers termes de la suite $(u_n)$.
|
||
|
|
||
|
|
||
|
\part On pose $v_n = u_n + \frac{ 2 }{ 11 }$.
|
||
|
\begin{subparts}
|
||
|
\subpart Calculer les 4 premiers termes de la suite $(v_n)$
|
||
|
\subpart Démontrer que $(v_n)$ est géométrique de raison $q = -10$.
|
||
|
\subpart En déduire l'expression explicite de $(v_n)$.
|
||
|
|
||
|
\subpart En déduire que l'expression explicite de $(u_n)$ est $u_n = \frac{ 13 }{ 11 } \times ( -10 )^{ n } + \frac{ -2 }{ 11 }$
|
||
|
\end{subparts}
|
||
|
\part Écrire un algorithme qui prend en argument un rang \texttt{n} et qui renvoie la la valeur de $v_n$ (vous ne pouvez pas utiliser la formule explicite)
|
||
|
\part Écrire un algorithme qui prend en argument un rang \texttt{n} et qui renvoie la la valeur de $u_0 + u_1 +\cdots + u_n$ ( vous pouvez utiliser la formule explicite)
|
||
|
\end{parts}
|
||
|
|
||
|
\end{questions}
|
||
|
|
||
|
\end{document}
|
||
|
|
||
|
%%% Local Variables:
|
||
|
%%% mode: latex
|
||
|
%%% TeX-master: "master"
|
||
|
%%% End:
|