Import work from year 2014-2015
This commit is contained in:
BIN
1er_STMG/Suites_fonctions/2nd_deg/Conn/Conn0109.pdf
Normal file
BIN
1er_STMG/Suites_fonctions/2nd_deg/Conn/Conn0109.pdf
Normal file
Binary file not shown.
559
1er_STMG/Suites_fonctions/2nd_deg/Conn/Conn0109.svg
Normal file
559
1er_STMG/Suites_fonctions/2nd_deg/Conn/Conn0109.svg
Normal file
@@ -0,0 +1,559 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.5 r10040"
|
||||
sodipodi:docname="Conn0109.pdf">
|
||||
<defs
|
||||
id="defs4">
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Sstart"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
id="path3859"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1.0pt"
|
||||
transform="scale(0.2) translate(6,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Send"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Send"
|
||||
style="overflow:visible;">
|
||||
<path
|
||||
id="path3862"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1.0pt;"
|
||||
transform="scale(0.2) rotate(180) translate(6,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="Arrow1Sstart-9"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3859-3"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="Arrow1Sstart-3"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3859-35"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker4524"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4526"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.6908268"
|
||||
inkscape:cx="526.18109"
|
||||
inkscape:cy="363.20433"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0" />
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
d="m 526.18109,347.4098 0,671.6589"
|
||||
id="path3753"
|
||||
inkscape:connector-curvature="0" />
|
||||
<g
|
||||
id="g4683"
|
||||
transform="translate(0,-21.259114)">
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3755"
|
||||
y="376.36063"
|
||||
x="28.44162"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="376.36063"
|
||||
x="28.44162"
|
||||
id="tspan3757"
|
||||
sodipodi:role="line">Nom - Prènom</tspan><tspan
|
||||
id="tspan3759"
|
||||
y="403.86063"
|
||||
x="28.44162"
|
||||
sodipodi:role="line" /></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3763"
|
||||
y="462.89197"
|
||||
x="120.07314"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="462.89197"
|
||||
x="120.07314"
|
||||
id="tspan3765"
|
||||
sodipodi:role="line">=</tspan></text>
|
||||
<path
|
||||
inkscape:transform-center-y="-3.9074021"
|
||||
transform="matrix(0.71942494,0,0,0.71942494,-3.2125436,276.31683)"
|
||||
d="m 122.32067,259.17434 9.40728,-16.29388 9.40727,-16.29388 9.40728,16.29388 9.40727,16.29388 -18.81455,0 z"
|
||||
inkscape:randomized="0"
|
||||
inkscape:rounded="0"
|
||||
inkscape:flatsided="false"
|
||||
sodipodi:arg2="3.6651914"
|
||||
sodipodi:arg1="2.6179939"
|
||||
sodipodi:r2="10.862586"
|
||||
sodipodi:r1="21.725172"
|
||||
sodipodi:cy="248.31175"
|
||||
sodipodi:cx="141.13522"
|
||||
sodipodi:sides="3"
|
||||
id="path3769"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
sodipodi:type="star" />
|
||||
<g
|
||||
transform="translate(-12.501019,0)"
|
||||
id="g4501">
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="40.942638"
|
||||
y="515.0376"
|
||||
id="text3776"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3778"
|
||||
x="40.942638"
|
||||
y="515.0376">Dans la suite on suppose </tspan></text>
|
||||
<path
|
||||
sodipodi:type="star"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="path3769-3"
|
||||
sodipodi:sides="3"
|
||||
sodipodi:cx="141.13522"
|
||||
sodipodi:cy="248.31175"
|
||||
sodipodi:r1="21.725172"
|
||||
sodipodi:r2="10.862586"
|
||||
sodipodi:arg1="2.6179939"
|
||||
sodipodi:arg2="3.6651914"
|
||||
inkscape:flatsided="false"
|
||||
inkscape:rounded="0"
|
||||
inkscape:randomized="0"
|
||||
d="m 122.32067,259.17434 9.40728,-16.29388 9.40727,-16.29388 9.40728,16.29388 9.40727,16.29388 -18.81455,0 z"
|
||||
transform="matrix(0.61739764,0,0,0.61739764,219.39514,359.36893)"
|
||||
inkscape:transform-center-y="-3.353264" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="326.51752"
|
||||
y="517.19141"
|
||||
id="text3801"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3803"
|
||||
x="326.51752"
|
||||
y="517.19141">> 0</tspan></text>
|
||||
</g>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3805"
|
||||
y="550.66937"
|
||||
x="28.44162"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="550.66937"
|
||||
x="28.44162"
|
||||
id="tspan3807"
|
||||
sodipodi:role="line">Nombre de racines:</tspan><tspan
|
||||
id="tspan3809"
|
||||
y="578.16937"
|
||||
x="28.44162"
|
||||
sodipodi:role="line">Racines:</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3811"
|
||||
y="699.23193"
|
||||
x="30.364471"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="699.23193"
|
||||
x="30.364471"
|
||||
id="tspan3813"
|
||||
sodipodi:role="line">Tableau de signes</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3815"
|
||||
y="858.9082"
|
||||
x="29.236542"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="858.9082"
|
||||
x="29.236542"
|
||||
id="tspan3817"
|
||||
sodipodi:role="line">Courbe dans la cas a>0</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3819"
|
||||
y="417.75128"
|
||||
x="28.44162"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="417.75128"
|
||||
x="28.44162"
|
||||
id="tspan3821"
|
||||
sodipodi:role="line">Dans la suite on étudie f(x) = ax<tspan
|
||||
id="tspan3823"
|
||||
style="font-size:65.00091553%;baseline-shift:super">2</tspan> + bx + c</tspan></text>
|
||||
<rect
|
||||
transform="translate(0,308.2677)"
|
||||
y="409.38843"
|
||||
x="76.767448"
|
||||
height="111.56869"
|
||||
width="378.71939"
|
||||
id="rect3825"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3827"
|
||||
d="m 77.791011,434.97757 377.695829,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3829"
|
||||
d="m 139.20497,409.38842 0,111.56869"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3831"
|
||||
y="736.08032"
|
||||
x="103.12399"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="736.08032"
|
||||
x="103.12399"
|
||||
id="tspan3833"
|
||||
sodipodi:role="line">x</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3835"
|
||||
y="792.3764"
|
||||
x="93.144501"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="792.3764"
|
||||
x="93.144501"
|
||||
id="tspan3837"
|
||||
sodipodi:role="line">f(x)</tspan></text>
|
||||
<g
|
||||
transform="matrix(1.1008181,0,0,1.1008181,-17.609952,-96.203869)"
|
||||
id="g4497">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart)"
|
||||
d="m 255.89148,876.57421 0,157.62919"
|
||||
id="path3839"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart)"
|
||||
d="m 333.54984,954.23256 -157.62922,0"
|
||||
id="path3839-3"
|
||||
inkscape:connector-curvature="0" />
|
||||
</g>
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4508"
|
||||
d="m 162.12457,159.28799 173.7049,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:1, 2;stroke-dashoffset:0" />
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4510"
|
||||
d="m 244.6344,250.48306 72.37704,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:1, 3;stroke-dashoffset:0" />
|
||||
</g>
|
||||
<g
|
||||
id="g4648"
|
||||
transform="translate(0,2.8658265)">
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3755-0"
|
||||
y="352.23569"
|
||||
x="572.24579"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="352.23569"
|
||||
x="572.24579"
|
||||
id="tspan3757-0"
|
||||
sodipodi:role="line">Nom - Prènom</tspan><tspan
|
||||
id="tspan3759-8"
|
||||
y="379.73569"
|
||||
x="572.24579"
|
||||
sodipodi:role="line" /></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3763-9"
|
||||
y="438.767"
|
||||
x="663.87726"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="438.767"
|
||||
x="663.87726"
|
||||
id="tspan3765-9"
|
||||
sodipodi:role="line">=</tspan></text>
|
||||
<path
|
||||
inkscape:transform-center-y="-3.9074021"
|
||||
transform="matrix(0.71942494,0,0,0.71942494,540.59159,252.19189)"
|
||||
d="m 122.32067,259.17434 9.40728,-16.29388 9.40727,-16.29388 9.40728,16.29388 9.40727,16.29388 -18.81455,0 z"
|
||||
inkscape:randomized="0"
|
||||
inkscape:rounded="0"
|
||||
inkscape:flatsided="false"
|
||||
sodipodi:arg2="3.6651914"
|
||||
sodipodi:arg1="2.6179939"
|
||||
sodipodi:r2="10.862586"
|
||||
sodipodi:r1="21.725172"
|
||||
sodipodi:cy="248.31175"
|
||||
sodipodi:cx="141.13522"
|
||||
sodipodi:sides="3"
|
||||
id="path3769-2"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
sodipodi:type="star" />
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3776-2"
|
||||
y="490.91266"
|
||||
x="572.24573"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="490.91266"
|
||||
x="572.24573"
|
||||
id="tspan3778-2"
|
||||
sodipodi:role="line">Dans la suite on suppose </tspan></text>
|
||||
<path
|
||||
inkscape:transform-center-y="-3.353264"
|
||||
transform="matrix(0.61739764,0,0,0.61739764,750.69825,335.24398)"
|
||||
d="m 122.32067,259.17434 9.40728,-16.29388 9.40727,-16.29388 9.40728,16.29388 9.40727,16.29388 -18.81455,0 z"
|
||||
inkscape:randomized="0"
|
||||
inkscape:rounded="0"
|
||||
inkscape:flatsided="false"
|
||||
sodipodi:arg2="3.6651914"
|
||||
sodipodi:arg1="2.6179939"
|
||||
sodipodi:r2="10.862586"
|
||||
sodipodi:r1="21.725172"
|
||||
sodipodi:cy="248.31175"
|
||||
sodipodi:cx="141.13522"
|
||||
sodipodi:sides="3"
|
||||
id="path3769-3-5"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
sodipodi:type="star" />
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3801-2"
|
||||
y="493.06647"
|
||||
x="857.82062"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="493.06647"
|
||||
x="857.82062"
|
||||
id="tspan3803-3"
|
||||
sodipodi:role="line">= 0</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3805-7"
|
||||
y="526.54443"
|
||||
x="572.24579"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="526.54443"
|
||||
x="572.24579"
|
||||
id="tspan3807-0"
|
||||
sodipodi:role="line">Nombre de racines:</tspan><tspan
|
||||
id="tspan3809-5"
|
||||
y="554.04443"
|
||||
x="572.24579"
|
||||
sodipodi:role="line">Racines:</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3811-4"
|
||||
y="675.10699"
|
||||
x="574.16864"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="675.10699"
|
||||
x="574.16864"
|
||||
id="tspan3813-6"
|
||||
sodipodi:role="line">Tableau de signes</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3815-5"
|
||||
y="834.78326"
|
||||
x="573.04071"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="834.78326"
|
||||
x="573.04071"
|
||||
id="tspan3817-4"
|
||||
sodipodi:role="line">Courbe dans la cas a>0</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3819-6"
|
||||
y="393.62631"
|
||||
x="572.24579"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="393.62631"
|
||||
x="572.24579"
|
||||
id="tspan3821-2"
|
||||
sodipodi:role="line">Dans la suite on étudie f(x) = ax<tspan
|
||||
id="tspan3823-4"
|
||||
style="font-size:65.00091553%;baseline-shift:super">2</tspan> + bx + c</tspan></text>
|
||||
<rect
|
||||
y="693.53125"
|
||||
x="620.57159"
|
||||
height="111.56869"
|
||||
width="378.71939"
|
||||
id="rect3825-6"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3827-2"
|
||||
d="m 621.59514,719.1203 377.69584,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3829-7"
|
||||
d="m 683.00911,693.5312 0,111.5687"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3831-6"
|
||||
y="711.95538"
|
||||
x="646.92816"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="711.95538"
|
||||
x="646.92816"
|
||||
id="tspan3833-7"
|
||||
sodipodi:role="line">x</tspan></text>
|
||||
<text
|
||||
sodipodi:linespacing="125%"
|
||||
id="text3835-3"
|
||||
y="768.2514"
|
||||
x="636.94867"
|
||||
style="font-size:22px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="768.2514"
|
||||
x="636.94867"
|
||||
id="tspan3837-1"
|
||||
sodipodi:role="line">f(x)</tspan></text>
|
||||
<g
|
||||
transform="matrix(1.1008181,0,0,1.1008181,526.19418,-120.32881)"
|
||||
id="g4497-3">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart)"
|
||||
d="m 255.89148,876.57421 0,157.62919"
|
||||
id="path3839-8"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart)"
|
||||
d="m 333.54984,954.23256 -157.62922,0"
|
||||
id="path3839-3-3"
|
||||
inkscape:connector-curvature="0" />
|
||||
</g>
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4508-3"
|
||||
d="m 705.92871,443.43075 173.7049,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:1, 2;stroke-dashoffset:0" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4510-7"
|
||||
d="m 788.43854,534.62582 72.37704,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:1, 3;stroke-dashoffset:0" />
|
||||
</g>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:38.22196198px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="467.59332"
|
||||
y="361.88519"
|
||||
id="text4719"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4721"
|
||||
x="467.59332"
|
||||
y="361.88519">1</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:39.99128342px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="1008.0927"
|
||||
y="360.43765"
|
||||
id="text4723"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4725"
|
||||
x="1008.0927"
|
||||
y="360.43765">2</tspan></text>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 25 KiB |
BIN
1er_STMG/Suites_fonctions/2nd_deg/Conn/Conn1205.pdf
Normal file
BIN
1er_STMG/Suites_fonctions/2nd_deg/Conn/Conn1205.pdf
Normal file
Binary file not shown.
80
1er_STMG/Suites_fonctions/2nd_deg/Conn/Conn1205.tex
Normal file
80
1er_STMG/Suites_fonctions/2nd_deg/Conn/Conn1205.tex
Normal file
@@ -0,0 +1,80 @@
|
||||
\documentclass{/media/documents/Cours/Prof/Enseignements/Archive/2014-2015/tools/style/classConn}
|
||||
|
||||
|
||||
% Title Page
|
||||
\title{}
|
||||
\author{}
|
||||
\date{}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{multicols}{2}
|
||||
|
||||
Nom - Prénom - Classe:
|
||||
\section{Connaissance}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Donner la formule du discriminant
|
||||
\vfill
|
||||
\begin{eqnarray*}
|
||||
\Delta & = & \parbox{3cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
\vfill
|
||||
\item Combien y a-t-il de solution à l'équation $ax^2 + bx + c = 0$ quand $\Delta = 0$?
|
||||
\\[0.5cm]
|
||||
.\dotfill
|
||||
\\[0.5cm]
|
||||
\vfill
|
||||
\item On suppose que $\Delta = 0$ donner les formules pour les deux solutions
|
||||
\vfill
|
||||
\begin{eqnarray*}
|
||||
x_1 & = & \parbox{1cm}{\dotfill} \\[1cm]
|
||||
x_2 & = & \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
\vfill
|
||||
\item Faire le calcul suivant: On donne $a = -1$, $b = 1$ et $c = -2$
|
||||
\vfill
|
||||
\begin{eqnarray*}
|
||||
A = a^2 - 2a - c & = & \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
\vfill
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\columnbreak
|
||||
Nom - Prénom - Classe
|
||||
\section{Connaissance}
|
||||
\begin{enumerate}
|
||||
\item Donner la formule du discriminant
|
||||
\vfill
|
||||
\begin{eqnarray*}
|
||||
\Delta & = & \parbox{3cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
\vfill
|
||||
\item Combien y a-t-il de solution à l'équation $ax^2 + bx + c = 0$ quand $\Delta > 0$?
|
||||
\\[0.5cm]
|
||||
.\dotfill
|
||||
\\[0.5cm]
|
||||
\item On suppose que $\Delta = 0$ donner les formules pour calculer la solution
|
||||
\vfill
|
||||
\begin{eqnarray*}
|
||||
x_1 & = & \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
\vfill
|
||||
\item Faire le calcul suivant: On donne $a = -2$, $b = 1$ et $c = -1$
|
||||
\vfill
|
||||
\begin{eqnarray*}
|
||||
A = a^2 - 2a - c & = & \parbox{1cm}{\dotfill}
|
||||
\end{eqnarray*}
|
||||
\vfill
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\end{multicols}
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
BIN
1er_STMG/Suites_fonctions/2nd_deg/Cours/2nd_deg.pdf
Normal file
BIN
1er_STMG/Suites_fonctions/2nd_deg/Cours/2nd_deg.pdf
Normal file
Binary file not shown.
67
1er_STMG/Suites_fonctions/2nd_deg/Cours/2nd_deg.tex
Normal file
67
1er_STMG/Suites_fonctions/2nd_deg/Cours/2nd_deg.tex
Normal file
@@ -0,0 +1,67 @@
|
||||
\documentclass[a4paper,10pt, table]{/media/documents/Cours/Prof/Enseignements/Archive/2014-2015/tools/style/classCours}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2014-2015/2014_2015}
|
||||
|
||||
% Title Page
|
||||
\titre{Polynôme du 2nd degré}
|
||||
% \seconde \premiereS \PSTMG \TSTMG
|
||||
\classe{\PSTMG}
|
||||
\date{Novembre 2014}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\section{Polynôme du 2nd degré}
|
||||
|
||||
\begin{Def}
|
||||
$f$ est un polynôme du 2nd degré quand elle est la forme
|
||||
\begin{eqnarray*}
|
||||
f(x) & = & ax^2 + bx + c
|
||||
\end{eqnarray*}
|
||||
avec $a$, $b$ et $c$ des rééls tels que $a \neq 0$.
|
||||
\end{Def}
|
||||
|
||||
\begin{Ex}
|
||||
Les coûts de productions d'une entreprise se calcul à partir de la fonction suivante
|
||||
\begin{eqnarray*}
|
||||
f(x) & = & x^2 + 5x + 125
|
||||
\end{eqnarray*}
|
||||
$f(x)$ est une fonction polynôme du 2nd degré et $a = 1$, $b = 5$ et $c = 125$.
|
||||
|
||||
Pour calculer les coûts pour 10 ordinateurs, on remplace les $x$ par 10 dans l'expression de $f$
|
||||
\begin{eqnarray*}
|
||||
f(10) & = & 10^2 + 5 \times 10 + 125
|
||||
\end{eqnarray*}
|
||||
On dessine le tableau fait en TP et on note comment faire calculer par un ordinateur.
|
||||
\end{Ex}
|
||||
|
||||
\begin{Prop}
|
||||
Soit $f(x) = ax^2 + bx + c$ alors la courbe représentative de $f$ est une \textbf{parabole} de la forme \textit{2graphiques en fonction du signe de $a$}.
|
||||
\end{Prop}
|
||||
|
||||
\section{Équation du 2nd degré}
|
||||
|
||||
\begin{Def}
|
||||
$f(x) = ax^2 + bx + c$ alors on définit
|
||||
\begin{eqnarray*}
|
||||
\Delta & = & b^2 - 4ac
|
||||
\end{eqnarray*}
|
||||
$\Delta$ sera le nombre qui déterminera le nombre de solution à une équation.
|
||||
\end{Def}
|
||||
|
||||
|
||||
\begin{Ex}
|
||||
3 exemples en fonction du signe de $\Delta$
|
||||
\end{Ex}
|
||||
|
||||
\section{$\Delta$ et les polynômes du 2nd degré}
|
||||
\begin{Prop}
|
||||
Tableau de signe et graphique en fonction de $\Delta$ et $a$
|
||||
\end{Prop}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
17
1er_STMG/Suites_fonctions/2nd_deg/Cours/index.rst
Normal file
17
1er_STMG/Suites_fonctions/2nd_deg/Cours/index.rst
Normal file
@@ -0,0 +1,17 @@
|
||||
Notes sur le cours autour des polynômes du 2nd degré pour les 1stmg
|
||||
###################################################################
|
||||
|
||||
:date: 2015-07-01
|
||||
:modified: 2015-07-01
|
||||
:tags: Fonctions,Cours
|
||||
:category: 1er_STMG
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers resume.pdf <resume.pdf>`_
|
||||
|
||||
`Lien vers 2nd_deg.tex <2nd_deg.tex>`_
|
||||
|
||||
`Lien vers 2nd_deg.pdf <2nd_deg.pdf>`_
|
||||
BIN
1er_STMG/Suites_fonctions/2nd_deg/Cours/resume.pdf
Normal file
BIN
1er_STMG/Suites_fonctions/2nd_deg/Cours/resume.pdf
Normal file
Binary file not shown.
556
1er_STMG/Suites_fonctions/2nd_deg/Cours/resume.svg
Normal file
556
1er_STMG/Suites_fonctions/2nd_deg/Cours/resume.svg
Normal file
@@ -0,0 +1,556 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="1052.3622"
|
||||
height="744.09448"
|
||||
id="svg2"
|
||||
version="1.1"
|
||||
inkscape:version="0.48.5 r10040"
|
||||
sodipodi:docname="Nouveau document 1">
|
||||
<defs
|
||||
id="defs4">
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Sstart"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
id="path4453"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1.0pt"
|
||||
transform="scale(0.2) translate(6,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="Arrow1Sstart-4"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4453-3"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker5081"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path5083"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="Arrow1Sstart-1"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4453-9"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker5119"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path5121"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker5123"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path5125"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker5127"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path5129"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="Arrow1Sstart-10"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4453-2"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker5119-6"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path5121-0"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker5123-2"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path5125-2"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="marker5127-6"
|
||||
style="overflow:visible">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path5129-7"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 0,0 z"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt"
|
||||
transform="matrix(0.2,0,0,0.2,1.2,0)" />
|
||||
</marker>
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="0.80366138"
|
||||
inkscape:cx="507.59791"
|
||||
inkscape:cy="372.04724"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1364"
|
||||
inkscape:window-height="748"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="274"
|
||||
inkscape:window-maximized="0"
|
||||
showguides="true">
|
||||
<sodipodi:guide
|
||||
position="0,0"
|
||||
orientation="0,1052.3622"
|
||||
id="guide3763" />
|
||||
<sodipodi:guide
|
||||
position="1052.3622,0"
|
||||
orientation="-744.09448,0"
|
||||
id="guide3765" />
|
||||
<sodipodi:guide
|
||||
position="1052.3622,744.09448"
|
||||
orientation="0,-1052.3622"
|
||||
id="guide3767" />
|
||||
<sodipodi:guide
|
||||
position="0,744.09448"
|
||||
orientation="744.09448,0"
|
||||
id="guide3769" />
|
||||
<inkscape:grid
|
||||
type="xygrid"
|
||||
id="grid3771"
|
||||
empspacing="5"
|
||||
visible="true"
|
||||
enabled="true"
|
||||
snapvisiblegridlinesonly="true" />
|
||||
</sodipodi:namedview>
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(0,-308.2677)">
|
||||
<rect
|
||||
style="fill:none;fill-opacity:1;stroke:#000000;stroke-width:4;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
|
||||
id="rect3753"
|
||||
width="1016.5973"
|
||||
height="653.26019"
|
||||
x="17.420273"
|
||||
y="70.925392"
|
||||
transform="translate(0,308.2677)" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:32px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="283.70157"
|
||||
y="48.527901"
|
||||
id="text3755"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
x="283.70157"
|
||||
y="48.527901"
|
||||
id="tspan3759">Polynômes du second degré</tspan></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
d="m 20,119.09448 1015,0"
|
||||
id="path3773"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="translate(0,308.2677)"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
d="m 350,724.09448 0,-605"
|
||||
id="path3775"
|
||||
inkscape:connector-curvature="0"
|
||||
transform="translate(0,308.2677)"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:4;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none"
|
||||
d="m 700,1032.3622 0,-605.00002"
|
||||
id="path3775-2"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:14px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="48.527901"
|
||||
y="196.6002"
|
||||
id="text3795"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3797"
|
||||
x="48.527901"
|
||||
y="196.6002" /></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="49.772205"
|
||||
y="194.1116"
|
||||
id="text3799"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3801"
|
||||
x="49.772205"
|
||||
y="194.1116">2 racines: </tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="384.4903"
|
||||
y="195.35591"
|
||||
id="text3803"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3805"
|
||||
x="384.4903"
|
||||
y="195.35591">Une racine: </tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="730.4071"
|
||||
y="192.86729"
|
||||
id="text3807"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3809"
|
||||
x="730.4071"
|
||||
y="192.86729">Pas de racines</tspan></text>
|
||||
<g
|
||||
id="g3817"
|
||||
transform="translate(2.4886103,18.664577)">
|
||||
<rect
|
||||
transform="translate(0,308.2677)"
|
||||
y="252.59395"
|
||||
x="31.10763"
|
||||
height="149.31662"
|
||||
width="301.12186"
|
||||
id="rect3811"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3813"
|
||||
d="m 31.107629,292.41171 300.499691,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
sodipodi:nodetypes="cc"
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3815"
|
||||
d="m 70.303241,253.2161 0,148.58124"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
<g
|
||||
transform="translate(340.93961,16.175964)"
|
||||
id="g3817-9">
|
||||
<rect
|
||||
transform="translate(0,308.2677)"
|
||||
y="252.59395"
|
||||
x="31.10763"
|
||||
height="149.31662"
|
||||
width="301.12186"
|
||||
id="rect3811-6"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3813-4"
|
||||
d="m 31.107629,292.41171 300.499691,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
sodipodi:nodetypes="cc"
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3815-3"
|
||||
d="m 70.303241,253.2161 0,148.58124"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
<g
|
||||
transform="translate(683.12352,14.931659)"
|
||||
id="g3817-1">
|
||||
<rect
|
||||
transform="translate(0,308.2677)"
|
||||
y="252.59395"
|
||||
x="31.10763"
|
||||
height="149.31662"
|
||||
width="301.12186"
|
||||
id="rect3811-8"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:round;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0" />
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3813-6"
|
||||
d="m 31.107629,292.41171 300.499691,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
<path
|
||||
sodipodi:nodetypes="cc"
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3815-9"
|
||||
d="m 70.303241,253.2161 0,148.58124"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none" />
|
||||
</g>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="43.550678"
|
||||
y="471.59164"
|
||||
id="text3869"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3871"
|
||||
x="43.550678"
|
||||
y="471.59164">Si a > 0:</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="43.550678"
|
||||
y="604.7323"
|
||||
id="text3873"
|
||||
sodipodi:linespacing="125%"
|
||||
transform="translate(0,308.2677)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3875"
|
||||
x="43.550678"
|
||||
y="604.7323">Si a < 0</tspan></text>
|
||||
<g
|
||||
id="g5065"
|
||||
transform="translate(44.794986,-24.886103)">
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3877"
|
||||
d="m 170.46981,461.63721 0,130.65204"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart);marker-mid:none;marker-end:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3877-4"
|
||||
d="m 235.79583,835.23093 -130.65204,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart);marker-mid:none;marker-end:none" />
|
||||
</g>
|
||||
<g
|
||||
transform="translate(44.883037,117.49879)"
|
||||
id="g5065-0">
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3877-9"
|
||||
d="m 170.46981,461.63721 0,130.65204"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart);marker-mid:none;marker-end:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3877-4-7"
|
||||
d="m 235.79583,835.23093 -130.65204,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart);marker-mid:none;marker-end:none" />
|
||||
</g>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="406.83377"
|
||||
y="777.63782"
|
||||
id="text3869-1"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3871-9"
|
||||
x="406.83377"
|
||||
y="777.63782">Si a > 0:</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="406.83377"
|
||||
y="910.77844"
|
||||
id="text3873-8"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3875-7"
|
||||
x="406.83377"
|
||||
y="910.77844">Si a < 0</tspan></text>
|
||||
<g
|
||||
id="g5065-6"
|
||||
transform="translate(408.0781,-27.107664)">
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3877-8"
|
||||
d="m 170.46981,461.63721 0,130.65204"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart);marker-mid:none;marker-end:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3877-4-3"
|
||||
d="m 235.79583,835.23093 -130.65204,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart);marker-mid:none;marker-end:none" />
|
||||
</g>
|
||||
<g
|
||||
transform="translate(408.16615,115.27723)"
|
||||
id="g5065-0-9">
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3877-9-7"
|
||||
d="m 170.46981,461.63721 0,130.65204"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart);marker-mid:none;marker-end:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3877-4-7-7"
|
||||
d="m 235.79583,835.23093 -130.65204,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart);marker-mid:none;marker-end:none" />
|
||||
</g>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="742.7962"
|
||||
y="772.66058"
|
||||
id="text3869-3"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3871-4"
|
||||
x="742.7962"
|
||||
y="772.66058">Si a > 0:</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-size:16px;font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Droid Sans;-inkscape-font-specification:Droid Sans"
|
||||
x="742.7962"
|
||||
y="905.80121"
|
||||
id="text3873-5"
|
||||
sodipodi:linespacing="125%"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan3875-2"
|
||||
x="742.7962"
|
||||
y="905.80121">Si a < 0</tspan></text>
|
||||
<g
|
||||
id="g5065-09"
|
||||
transform="translate(744.04049,-32.084884)">
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3877-7"
|
||||
d="m 170.46981,461.63721 0,130.65204"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart);marker-mid:none;marker-end:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3877-4-30"
|
||||
d="m 235.79583,835.23093 -130.65204,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart);marker-mid:none;marker-end:none" />
|
||||
</g>
|
||||
<g
|
||||
transform="translate(744.12854,110.30001)"
|
||||
id="g5065-0-5">
|
||||
<path
|
||||
transform="translate(0,308.2677)"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3877-9-4"
|
||||
d="m 170.46981,461.63721 0,130.65204"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart);marker-mid:none;marker-end:none" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path3877-4-7-0"
|
||||
d="m 235.79583,835.23093 -130.65204,0"
|
||||
style="fill:none;stroke:#000000;stroke-width:2.5;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-opacity:1;stroke-dasharray:none;marker-start:url(#Arrow1Sstart);marker-mid:none;marker-end:none" />
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 22 KiB |
BIN
1er_STMG/Suites_fonctions/2nd_deg/Exo/Exo_corr.pdf
Normal file
BIN
1er_STMG/Suites_fonctions/2nd_deg/Exo/Exo_corr.pdf
Normal file
Binary file not shown.
159
1er_STMG/Suites_fonctions/2nd_deg/Exo/Exo_corr.tex
Normal file
159
1er_STMG/Suites_fonctions/2nd_deg/Exo/Exo_corr.tex
Normal file
@@ -0,0 +1,159 @@
|
||||
\documentclass[a4paper,10pt, table]{/media/documents/Cours/Prof/Enseignements/Archive/2014-2015/tools/style/classDS}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2014-2015/2014_2015}
|
||||
\usepackage{tkz-tab}
|
||||
|
||||
% Title Page
|
||||
\titre{Production et bénéfice}
|
||||
% \seconde \premiereS \PSTMG \TSTMG
|
||||
\classe{\PSTMG}
|
||||
\date{11 décembre 2014}
|
||||
%\duree{1 heure}
|
||||
%\sujet{%{{infos.subj%}}}
|
||||
% DS DSCorr DM DMCorr Corr
|
||||
\typedoc{Corr}
|
||||
|
||||
\printanswers
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
Une entreprise produit et vend des chaises de bureau. Chacune de ces chaises sont vendus 56\euro d'unité.
|
||||
|
||||
Pour un nombre de chaises $q$ produite, le coût de production est donnée par la fonction suivante
|
||||
\begin{eqnarray*}
|
||||
C(q) & = & 0,1q^2 + 10q + 450
|
||||
\end{eqnarray*}
|
||||
On supposera que toutes les chaises produites sont vendue.
|
||||
\begin{solution}
|
||||
On peut extraire de ce texte d'information 3 éléments importants:
|
||||
\begin{itemize}
|
||||
\item Une chaise est vendue 56\euro.
|
||||
\item $q$ : nombre de chaise produite
|
||||
\item Le coût: $C(q) = 0,1q^2 + 10q + 450$
|
||||
\end{itemize}
|
||||
\end{solution}
|
||||
\begin{enumerate}
|
||||
\item
|
||||
\begin{enumerate}
|
||||
\item Calculer les coûts fixes (quand la production est nulle).
|
||||
\begin{solution}
|
||||
On veut calculer $C(q)$ pour $q = 0$ (production nulle)
|
||||
\begin{eqnarray*}
|
||||
C(0) & = & 0,1\times 0^2 + 10 \times 0 + 450 \\
|
||||
C(0) & = & 450
|
||||
\end{eqnarray*}
|
||||
Les coûts fixes sont dont de 450.
|
||||
\end{solution}
|
||||
\item Calculer le coût de fabrication de 10 chaises.
|
||||
\begin{solution}
|
||||
Coût de production pour 10 chaises
|
||||
\begin{eqnarray*}
|
||||
C(10) & = & 0,1\times 10^2 + 10 \times 10 + 450 = 560
|
||||
\end{eqnarray*}
|
||||
La production de 10 chaises coûtera 560.
|
||||
\end{solution}
|
||||
\item Determiner la quantitié de chaises pour que les coûts soient égaux à 690\euro.
|
||||
\begin{solution}
|
||||
On cherche $q$ tel que $C(q) = 690$.
|
||||
\begin{eqnarray*}
|
||||
0,1q^2 + 10q + 450 & = & 690 \\
|
||||
0,1q^2 + 10q + 450 - 690 &=& 690 \\
|
||||
0,1q^2 + 10q - 240 &=& 0
|
||||
\end{eqnarray*}
|
||||
On reconnait une équation du second degré avec
|
||||
\begin{eqnarray*}
|
||||
a = 0,1 \qquad b = 10 \qquad c = -240
|
||||
\end{eqnarray*}
|
||||
On calcule le discriminant
|
||||
\begin{eqnarray*}
|
||||
\Delta & = & b^2 - 4ac = 10^2 - 4\times 0,1 \times (-240) = 196
|
||||
\end{eqnarray*}
|
||||
$\Delta$ est positif, il y a donc deux solutions.
|
||||
\begin{eqnarray*}
|
||||
x_1 & = & \frac{-b - \sqrt{\Delta=}}{2a} = \frac{-10 - \sqrt{196}}{2\times0,1} = -120 \\
|
||||
x_2 & = & \frac{-b + \sqrt{\Delta=}}{2a} = \frac{-10 + \sqrt{196}}{2\times0,1} = 20 \\
|
||||
\end{eqnarray*}
|
||||
La solution $x_1 = -120$ est impossible car on ne peut pas produire un nombre de chaise négatif.
|
||||
|
||||
Donc pour que les coûts soient égaux à 690\euro, il faut produire 20 chaises.
|
||||
\end{solution}
|
||||
\end{enumerate}
|
||||
\item Exprimer les recettes $R(q)$ en fonction de $q$.
|
||||
\begin{solution}
|
||||
Comme chaque chaise est vendue 56\euro, les recettes se calculent en multipliant le nombre de chaise vendues par 56. Donc
|
||||
\begin{eqnarray*}
|
||||
R(q) & = & 56q
|
||||
\end{eqnarray*}
|
||||
\end{solution}
|
||||
\item
|
||||
\begin{enumerate}
|
||||
\item Montrer que les bénéfices s'exprime par
|
||||
\begin{eqnarray*}
|
||||
B(q) & = & -0,1q^2 + 46q - 450
|
||||
\end{eqnarray*}
|
||||
\begin{solution}
|
||||
On rappelle que
|
||||
\begin{center}
|
||||
\ovalbox{Bénéfice = Recette - Coût}
|
||||
\end{center}
|
||||
Donc
|
||||
\begin{eqnarray*}
|
||||
B(q) & = & R(q) - C(q) \\
|
||||
B(q) &=& 56q - (0,1q^2 + 10q + 450) \\
|
||||
&& \mbox{Un "-" devant une parenthèse change }\\
|
||||
&& \mbox{le signe de ce qui est à l'interieur}\\
|
||||
B(q) &=& 56q - 0,1q^2 - 10q - 450 \\
|
||||
B(q) &=& -0,1q^2 + 46q - 450
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{solution}
|
||||
\item Si l'entreprise produit et vend 14 chaises, fait-elle du bénéfice?
|
||||
\begin{solution}
|
||||
Bénéfice pour la production et la vente de 14 chaises
|
||||
\begin{eqnarray*}
|
||||
B(14) & = & -0,1\times 14^2 + 46\times14 - 56 \\
|
||||
B(14) &=& 174,4
|
||||
\end{eqnarray*}
|
||||
L'entreprise fait 174,4\euro de bénéfices.
|
||||
\end{solution}
|
||||
\item Tracer le tableau de signe de $B(q)$.
|
||||
\begin{solution}
|
||||
Tableau de signe de $B(q) = -0,1q^2 + 46q - 450$.
|
||||
\begin{eqnarray*}
|
||||
a = -0,1 \qquad b = 46 \qquad c = -450
|
||||
\end{eqnarray*}
|
||||
Calcul du discriminant
|
||||
\begin{eqnarray*}
|
||||
\Delta & = & b^2 - 4ac = 46^2 - 4\times (-0,1) \times (-450)\\
|
||||
\Delta &=& 1936
|
||||
\end{eqnarray*}
|
||||
$\Delta$ est positif il y a donc deux racines
|
||||
\begin{eqnarray*}
|
||||
x_1 & = & \frac{-b - \sqrt{\Delta=}}{2a} = \frac{-46 - \sqrt{1936}}{2\times(-0,1)} = 450 \\
|
||||
x_2 & = & \frac{-b + \sqrt{\Delta=}}{2a} = \frac{-46 + \sqrt{1936}}{2\times(-0,1)} = 10 \\
|
||||
\end{eqnarray*}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\tkzTabInit{$q$ / 1 ,$B(q)$ /1 }%
|
||||
{$-\infty$ , $10$ , $450$, $+\infty$ }%
|
||||
\tkzTabLine{ ,- ,z ,+ ,z ,-, }
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\end{solution}
|
||||
\item Combien de chaise au minimum doit-elle produire pour faire du bénéfice? Au maximum?
|
||||
\begin{solution}
|
||||
Pour faire des bénéfices (là où il y a des + dans le tableau), l'entreprise doit produire au minimum 10 chaises et au maximum 450.
|
||||
\end{solution}
|
||||
\end{enumerate}
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
||||
BIN
1er_STMG/Suites_fonctions/2nd_deg/Exo/benef.ods
Normal file
BIN
1er_STMG/Suites_fonctions/2nd_deg/Exo/benef.ods
Normal file
Binary file not shown.
21
1er_STMG/Suites_fonctions/2nd_deg/Exo/index.rst
Normal file
21
1er_STMG/Suites_fonctions/2nd_deg/Exo/index.rst
Normal file
@@ -0,0 +1,21 @@
|
||||
Notes sur des exercices autour des polynômes du 2nd degré
|
||||
#########################################################
|
||||
|
||||
:date: 2015-07-01
|
||||
:modified: 2015-07-01
|
||||
:tags: Fonctions,Exo
|
||||
:category: 1er_STMG
|
||||
:authors: Benjamin Bertrand
|
||||
:summary: Pas de résumé, note créée automatiquement parce que je ne l'avais pas bien fait...
|
||||
|
||||
|
||||
|
||||
`Lien vers production.pdf <production.pdf>`_
|
||||
|
||||
`Lien vers production.tex <production.tex>`_
|
||||
|
||||
`Lien vers Exo_corr.pdf <Exo_corr.pdf>`_
|
||||
|
||||
`Lien vers Exo_corr.tex <Exo_corr.tex>`_
|
||||
|
||||
`Lien vers benef.ods <benef.ods>`_
|
||||
BIN
1er_STMG/Suites_fonctions/2nd_deg/Exo/production.pdf
Normal file
BIN
1er_STMG/Suites_fonctions/2nd_deg/Exo/production.pdf
Normal file
Binary file not shown.
44
1er_STMG/Suites_fonctions/2nd_deg/Exo/production.tex
Executable file
44
1er_STMG/Suites_fonctions/2nd_deg/Exo/production.tex
Executable file
@@ -0,0 +1,44 @@
|
||||
\documentclass[a4paper,10pt,xcolor=table]{/media/documents/Cours/Prof/Enseignements/Archive/2014-2015/tools/style/classPres}
|
||||
\usepackage{/media/documents/Cours/Prof/Enseignements/Archive/2014-2015/2014_2015}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{frame}{Production et bénéfices}
|
||||
|
||||
Une entreprise produit et vend des chaises de bureau. Chacune de ces chaises sont vendus 56\euro d'unité.
|
||||
|
||||
Pour un nombre de chaises $q$ produite, le coût de production est donnée par la fonction suivante
|
||||
\begin{eqnarray*}
|
||||
C(q) & = & 0,1q^2 + 10q + 450
|
||||
\end{eqnarray*}
|
||||
On supposera que toutes les chaises produites sont vendue.
|
||||
\begin{enumerate}
|
||||
\item
|
||||
\begin{enumerate}
|
||||
\item Calculer les coûts fixes (quand la production est nulle).
|
||||
\item Calculer le coût de fabrication de 10 chaises.
|
||||
\item Determiner la quantitié de chaises pour que les coûts soient égaux à 690\euro.
|
||||
\end{enumerate}
|
||||
\item Exprimer les recettes $R(q)$ en fonction de $q$.
|
||||
\item
|
||||
\begin{enumerate}
|
||||
\item Montrer que les bénéfices s'exprime par
|
||||
\begin{eqnarray*}
|
||||
B(q) & = & -0,1q^2 + 46q - 450
|
||||
\end{eqnarray*}
|
||||
\item Si l'entreprise produit et vend 14 chaises, fait-elle du bénéfice?
|
||||
\item Tracer le tableau de signe de $B(q)$.
|
||||
\item Combien de chaise au minimum doit-elle produire pour faire du bénéfice? Au maximum?
|
||||
\end{enumerate}
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\end{document}
|
||||
Reference in New Issue
Block a user