2014-2015/T_STMG/DS/DST_04/Bilan/Bilan.ipynb
2017-06-16 09:48:07 +03:00

555 lines
21 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 74,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pandas as pd\n",
"from opytex import texenv\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Informations sur le devoir"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"{'classe': '\\\\TSTMG', 'date': '16 mai 2015', 'titre': 'DST 04'}"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds_name = 'DST_04'\n",
"classe = 'tstmg'\n",
"\n",
"latex_info = {}\n",
"latex_info['titre'] = 'DST 04' \n",
"latex_info['classe'] = '\\\\TSTMG'\n",
"latex_info['date'] = '16 mai 2015'\n",
"latex_info"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Import et premiers traitements"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [],
"source": [
"notes = pd.ExcelFile(\"./../../../notes_\"+classe+\".xls\")\n",
"notes.sheet_names\n",
"notes = notes.parse(ds_name)"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Index(['DST_04', 'av_arrondi', 'Exercice 1', 'QCM', '1.1', '1.2', 'Exercice 2',\n",
" '2.A.1', '2.A.2', '2.A.3.a', '2.A.3.b', '2.A.3.c', '2.B.1', '2.B.2',\n",
" 'Exercice 3', '3.A.1', '3.A.2', '3.B.1', '3.B.2', '3.B.3', 'Exercice 4',\n",
" '4.A.1', '4.A.1.a', '4.A.1.b', '4.B.1', '4.B.2', '4.B.3'],\n",
" dtype='object')"
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes.index"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"notes = notes.T"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes = notes.drop('av_arrondi', axis=1)\n",
"#notes = notes.drop('num_sujet', axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"barem = notes[:1]\n",
"notes = notes[1:]\n",
"#notes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Supression des notes inutiles "
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes = notes[notes[ds_name].notnull()]\n",
"notes = notes[notes[ds_name] != 0]"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes = notes.astype(float)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Traitement des notes"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"Index(['DST_04', 'Exercice 1', 'QCM', '1.1', '1.2', 'Exercice 2', '2.A.1',\n",
" '2.A.2', '2.A.3.a', '2.A.3.b', '2.A.3.c', '2.B.1', '2.B.2',\n",
" 'Exercice 3', '3.A.1', '3.A.2', '3.B.1', '3.B.2', '3.B.3', 'Exercice 4',\n",
" '4.A.1', '4.A.1.a', '4.A.1.b', '4.B.1', '4.B.2', '4.B.3'],\n",
" dtype='object')"
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes.T.index"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"list_exo = [\"Exercice 1\", \"Exercice 2\", \"Exercice 3\", \"Exercice 4\"]"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes[list_exo] = notes[list_exo].applymap(lambda x:round(x,2))\n",
"#notes[list_exo]"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"['1.1',\n",
" '1.2',\n",
" '2.A.1',\n",
" '2.A.2',\n",
" '2.A.3.a',\n",
" '2.A.3.b',\n",
" '2.A.3.c',\n",
" '2.B.1',\n",
" '2.B.2',\n",
" '3.A.1',\n",
" '3.A.2',\n",
" '3.B.1',\n",
" '3.B.2',\n",
" '3.B.3',\n",
" '4.A.1',\n",
" '4.A.1.a',\n",
" '4.A.1.b',\n",
" '4.B.1',\n",
" '4.B.2',\n",
" '4.B.3']"
]
},
"execution_count": 86,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"item_avec_note = list_exo + [ds_name, \"QCM\"]\n",
"sous_exo = [i for i in notes.T.index if i not in item_avec_note]\n",
"sous_exo"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def toRepVal(val):\n",
" if pd.isnull(val):\n",
" return \"\\\\NoRep\"\n",
" elif val == 0:\n",
" return \"\\\\RepZ\"\n",
" elif val == 1:\n",
" return \"\\\\RepU\"\n",
" elif val == 2:\n",
" return \"\\\\RepD\"\n",
" elif val == 3:\n",
" return \"\\\\RepT\"\n",
" else:\n",
" return val"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes[item_avec_note] = notes[item_avec_note].fillna(\".\")\n",
"#notes"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"eleves = notes.copy()\n",
"eleves[sous_exo] = notes[sous_exo].applymap(toRepVal)"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"26"
]
},
"execution_count": 90,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(notes.T.index)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Preparation du fichier .tex"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"bilan = texenv.get_template(\"tpl_bilan.tex\")\n",
"with open(\"./bilan.tex\",\"w\") as f:\n",
" f.write(bilan.render(eleves = eleves, barem = barem, ds_name = ds_name, latex_info = latex_info, nbr_questions = len(barem.T)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Un peu de statistiques"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"count 20.000000\n",
"mean 11.425000\n",
"std 4.733072\n",
"min 3.000000\n",
"25% 8.500000\n",
"50% 10.750000\n",
"75% 15.125000\n",
"max 20.000000\n",
"Name: DST_04, dtype: float64"
]
},
"execution_count": 92,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes[ds_name].describe()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f54263a3d30>"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGblJREFUeJzt3X+wXGd93/H3B8tgPKbITqYyWOpcpphMTAmSaY3GtPU1\nhRmjyQj+YCb2NOMAM6AJVXBISdOmtOG//qBpjIkMmtpGJhnwMA5x7Yw8mARfBiaNcLGuKltyYw+o\nkWCQMxHyQEQbHH37x55r1qu99zxHOrvne8/5vGbuaJ/dZ3c/9znP/d7d7+5eKSIwM7N+eEnXAczM\nrD0u6mZmPeKibmbWIy7qZmY94qJuZtYjLupmZj1SVNQlXSTpoKSHVrn8DklPSzokaVu7Ec3MrFTp\nI/XbgCPAOW9ql7QDeG1EXA18APhUe/HMzKyJ2qIuaTOwA7gL0JQpO4F7ASLiALBR0qY2Q5qZWZmS\nR+q/A/w6cHaVy68Cjo+NTwCbLzCXmZmdhzWLuqSfB56NiINMf5T+wtSJsf/2gJlZBzbUXH49sLPq\nm18C/B1Jn42IW8fmfAfYMjbeXJ33IpJc6M3MzkNErPWg+pzJRV/ADcBDU87fAeyvTm8H/myV60fp\nfc3rC/hY1xnWQ6aV4wdR8zXfY5xxrZxp/WbKmqvpz1XdI/VzfgcASNpV3dPeiNgvaYekZ4C/Bt7b\n8Da7tNB1gCkWug6wjix0HWCKha4DTLHQdYApFroOsIqFrgNcqOKiHhFfBb5and47cdnulnOZmdl5\nGPonSvd1HWCKfV0HWEf2dR1gin1dB5hiX9cBptjXdYBV7Os6wIVS1bOZ/R1JEU2a/ZbK6IXuur0i\nfIzN2tW0dg76kbqkxa4zTMqYKauMa+VMZTJmgry5mhh0UTcz6xu3X6yI2y9m3XD7xcxswAZd1DP2\nzzJmyirjWjlTmYyZIG+uJgZd1M3M+sY9dSvinrpZN9xTNzMbsEEX9Yz9s4yZssq4Vs5UJmMmyJur\niUEXdTOzvnFP3Yq4p27WDffUzcwGbNBFPWP/LGOmrDKulTOVyZgJ8uZqYtBF3cysb9xTtyLuqZt1\nwz11M7MBG3RRz9g/y5gpq4xr5UxlMmaCvLmaqC3qki6RdEDSsqQnJH1sypxFSc9JOlh9fXQmac3M\nbE1FPXVJl0bEGUkbgK8Dt0XEgbHLF4Ffi4ida9yGe+rrmHvqZt2YSU89Is5UJ18KXAycnXbfpXdq\nZmazUVTUJb1E0jJwEngkIh6bmBLA9ZIOSdov6Zq2g85Cxv5ZxkxZZVwrZyqTMRPkzdVE6SP1sxGx\nFdgMvFnS6yemPA5siYg3Ap8EHmg3ppmZldjQZHJEPCfpUeAm4Mmx838wdvphSXdKuiIiTo1fX9I+\n4Fg1PA0sR8RSddlidf25jseydXL/62U8sgQsjp1mynjExy/POCKWMuWhImkxS55M4+r0e6plOkZD\ntS+USvpp4PmIOC3p5cCXgP8YEfvH5mwCno2IkHQd8IWIWJi4Hb9Quo75hVKzbszihdJXAV+RdAj4\nBqOe+n5JuyTtqua8Gzhc9d1vB25uGrwLGftnGTNllXGtnKlMxkyQN1cTte2XiDgMXDvl/L1jp/cA\ne9qNZmZmTflvv1gRt1/MujGT96mbmdn6MOiinrF/ljFTVhnXypnKZMwEeXM1MeiibmbWN+6pWxH3\n1M264Z66mdmADbqoZ+yfZcyUVca1cqYyGTNB3lxNDLqom5n1jXvqVsQ9dbNuuKduZjZggy7qGftn\nGTNllXGtnKlMxkyQN1cTgy7qZmZ94566FXFP3awb7qmbmQ3YoIt6xv5ZxkxZZVwrZyqTMRPkzdXE\noIu6mVnfuKduRdxTN+uGe+pmZgM26KKesX+WMVNWGdfKmcpkzAR5czWxZlGXdImkA5KWJT0h6WOr\nzLtD0tOSDknaNpOkZmZWq7anLunSiDgjaQPwdeC2iDgwdvkOYHdE7JD0ZuATEbF9yu24p76Ouadu\n1o3We+oRcaY6+VLgYuDsxJSdwL3V3APARkmbSgOYmVl7aou6pJdIWgZOAo9ExGMTU64Cjo+NTwCb\n24s4Oxn7ZxkzZZVxrZypTMZMkDdXExvqJkTEWWCrpFcCfyjp9RHx5MS0yacGU5+nS9oHHKuGp4Hl\niFiqLlus7m+e461Al/d/znhsrVLkWRmPLAGLY6eZMp5rfh+/dTpmVFPS5Ml0/KrT76miHKOhRu9T\nl/TvgDMR8dtj530aWIqI+6rxU8ANEXFy4rruqa9j7qmbdaPVnrqkn5a0sTr9cuDtwNGJaQ8Ct1Zz\ntgOnJwu6mZnNR11P/VXAVyQdAr7BqKe+X9IuSbsAImI/8C1JzwB7gQ/ONHGLMvbPMmbKKuNaOVOZ\njJkgb64m1uypR8Rh4Nop5++dGO9uOZeZmZ0H/+0XK+Keulk3Wn+fupmZrR+DLuoZ+2cZM2WVca2c\nqUzGTJA3VxODLupmZn3jnroVcU/drBvuqZuZDdigi3rG/lnGTFllXCtnKpMxE+TN1cSgi7qZWd+4\np25F3FM364Z76mZmAzboop6xf5YxU1YZ18qZymTMBHlzNTHoom5m1jfuqVsR99TNuuGeupnZgA26\nqGfsn2XMlFXGtXKmMhkzQd5cTQy6qJuZ9Y176lbEPXWzbrinbmY2YIMu6hn7ZxkzZZVxrZypTMZM\nkDdXE7VFXdIWSY9KelLSE5I+NGXOoqTnJB2svj46m7hmZraW2p66pCuBKyNiWdJlwDeBd0XE0bE5\ni8CvRcTONW7HPfV1zD11s2603lOPiO9FxHJ1+ofAUeDV0+67OKWZmc1Eo566pAVgG3Bg4qIArpd0\nSNJ+Sde0E2+2MvbPMmbKKuNaOVOZjJkgb64mNpROrFov9wO3VY/Yxz0ObImIM5LeATwAvG7KbewD\njlXD08ByRCxVly0CzHm8Fejy/s8Zj61Vijwr45ElYHHsNFPGc83v47dOx8BWSWnyZDp+1en3VFGO\n0VDR+9QlXQz8EfBwRNxeMP/bwJsi4tTYee6pr2PuqZt1o/WeuiQBdwNHVivokjZV85B0HaNfFqem\nzTUzs9kp6am/BfhF4Maxtyy+Q9IuSbuqOe8GDktaBm4Hbp5R3lZl7J9lzJRVxrVypjIZM0HeXE3U\n9tQj4uvUFP+I2APsaSuUmZmdH//tFyvinrpZN1rvqZuZ2fox6KKesX+WMVNWGdfKmcpkzAR5czUx\n6KJuZtY37qlbEffUzbrhnrqZ2YANuqhn7J9lzJRVxrVypjIZM0HeXE0MuqibmfWNe+pWxD11s264\np25mNmCDLuoZ+2cZM2WVca2cqUzGTJA3VxODLupmZn3jnroVcU/drBvuqZuZDdigi3rG/lnGTFll\nXCtnKpMxE+TN1cSgi7qZWd+4p25F3FM364Z76mZmAzboop6xf5YxU1YZ18qZymTMBHlzNVFb1CVt\nkfSopCclPSHpQ6vMu0PS05IOSdrWflQzM6tT21OXdCVwZUQsS7oM+Cbwrog4OjZnB7A7InZIejPw\niYjYPnE77qmvY+6pm3Wj9Z56RHwvIpar0z8EjgKvnpi2E7i3mnMA2ChpU3FqMzNrxYYmkyUtANuA\nAxMXXQUcHxufADYDJy8g22oZ3g5cUjD1cEQcq7mtxYhYaiNXWzJmyirjWjlTmYyZIG+uJoqLetV6\nuR+4rXrEfs6UifE5z9Ul7QOOVcPTwPLKAq68QFE3hpd/Dra+DM5UzzKueH7076kNPxkfeRmc/LSk\n/15ze1uBRvc/6/HYWqXI8+INvgQsjp1myniu+R+V6p+VRoTW6fF7tPabm//3V5QJuHGt2wO2Skqz\nv7v6+aN8PYsVvU9d0sXAHwEPR8TtUy7/NLAUEfdV46eAGyLi5NicVnrq0itOwZHLYcsas97/I7jr\nIxFx54Xen41k7KlnzNSmjN9fxkzr2SzWs+TdLwLuBo5MK+iVB4Fbq/nbgdPjBd3MzOaj5H3qbwF+\nEbhR0sHq6x2SdknaBRAR+4FvSXoG2At8cHaR25PxPakZM1m5jMfPmcplzdVEbU89Ir5O2btkdreS\nyMzMztugP1Ga8VXujJmsXMbj50zlsuZqYtBF3cysbwZd1DP2zzJmsnIZj58zlcuaq4lBF3Uzs74Z\ndFHP2D/LmMnKZTx+zlQua64mBl3Uzcz6ZtBFPWP/LGMmK5fx+DlTuay5mhh0UTcz65tBF/WM/bOM\nmaxcxuPnTOWy5mpi0EXdzKxvBl3UM/bPMmaychmPnzOVy5qriUEXdTOzvhl0Uc/YP8uYycplPH7O\nVC5rriYGXdTNzPpm0EU9Y/8sYyYrl/H4OVO5rLmaGHRRNzPrm0EX9Yz9s4yZrFzG4+dM5bLmamLQ\nRd3MrG8GXdQz9s8yZrJyGY+fM5XLmquJ2qIu6R5JJyUdXuXyRUnPjf2n1B9tP6aZmZWo/Y+ngc8A\nnwQ+u8acr0bEznYizU/G/lnGTFYu4/FzpnJZczVR+0g9Ir4GfL9mmtqJY2ZmF6KNnnoA10s6JGm/\npGtauM25yNg/y5jJymU8fs5ULmuuJkraL3UeB7ZExBlJ7wAeAF43baKkfcCxangaWF55urOymHVj\nuKy6+lL17+IqY66WtFhze1tXrlh6/7Mer8iS58VPR5dYfb3Hps0x34uz5cnT9++v7uevYD9tlZRm\nf3f18/cTK8uyWJ3eV40XaEoRUT9JWgAeiog3FMz9NvCmiDg1cX5ExAW3aaRXnIIjl8OWNWa9/0dw\n10ci4s4LvT8bkRSjJ2VrzqKNY1wqY6Y2Zfz+MmZaz2axnhfcfpG0SZKq09cx+kVxquZqZmY2AyVv\nafw88KfAz0g6Lul9knZJ2lVNeTdwWNIycDtw8+zititj/yxjJiuX8fg5U7msuZqo7alHxC01l+8B\n9rSWyMzMztugP1Ga8T2pGTNZuYzHz5nKZc3VxKCLuplZ3wy6qGfsn2XMZOUyHj9nKpc1VxODLupm\nZn0z6KKesX+WMZOVy3j8nKlc1lxNDLqom5n1zaCLesb+WcZMVi7j8XOmcllzNTHoom5m1jeDLuoZ\n+2cZM1m5jMfPmcplzdXEoIu6mVnfDLqoZ+yfZcxk5TIeP2cqlzVXE4Mu6mZmfTPoop6xf5Yxk5XL\nePycqVzWXE0MuqibmfXNoIt6xv5ZxkxWLuPxc6ZyWXM1MeiibmbWN4Mu6hn7ZxkzWbmMx8+ZymXN\n1cSgi7qZWd8Muqhn7J9lzGTlMh4/ZyqXNVcTJf/x9D2STko6vMacOyQ9LemQpG3tRjQzs1Ilj9Q/\nA9y02oWSdgCvjYirgQ8An2op28xl7J9lzGTlMh4/ZyqXNVcTtUU9Ir4GfH+NKTuBe6u5B4CNkja1\nE8/MzJpoo6d+FXB8bHwC2NzC7c5cxv5ZxkxWLuPxc6ZyWXM1saGl29HEOKZOkvYBx6rhaWB55enO\nymLWjeGy6upL1b+Lq4y5WtJize1tXbli6f3Pegw8Kk0u56punFe+kSVWX+/RWNLUYz8uItTieq2Z\nZ8Vat1eSeTx7TZ7S43fjankmbq+yVP27ODEemeP+rMmzuJKndk1L93mb+6X0++t2PZeAfdV44Zz1\nqKOI+v0saQF4KCLeMOWyTwNLEXFfNX4KuCEiTk7Mi5UfiAshveIUHLkctqwx6/0/grs+EhF3Xuj9\nzdvoh6Gkxog21rNUWS5RMqet3KWZ6u6vzTVvK1Pbt9WWNvdBxn0+b7M4xm20Xx4EbgWQtB04PVnQ\nzcxsPkre0vh54E+Bn5F0XNL7JO2StAsgIvYD35L0DLAX+OBME7eoD/0zszre5+X6sFa1PfWIuKVg\nzu524piZ2YUY9CdK+/CeVLM63ufl+rBWgy7qZmZ9M+ii3of+mVkd7/NyfVirQRd1M7O+GXRR70P/\nzKyO93m5PqzVoIu6mVnfDLqo96F/ZlbH+7xcH9Zq0EXdzKxvBl3U+9A/M6vjfV6uD2s16KJuZtY3\ngy7qfeifmdXxPi/Xh7UadFE3M+ubQRf1PvTPzOp4n5frw1oNuqibmfXNoIt6H/pnZnW8z8v1Ya0G\nXdTNzPpm0EW9D/0zszre5+X6sFaDLupmZn1TVNQl3STpKUlPS/qNKZcvSnpO0sHq66PtR21fH/pn\nZnW8z8v1Ya1q/49SSRcBvwu8DfgO8JikByPi6MTUr0bEzhlkNDOzQiWP1K8DnomIYxHxY+A+4J1T\n5qnVZHPQh/6ZWR3v83J9WKuSon4VcHxsfKI6b1wA10s6JGm/pGvaCmhmZuVKinoUzHkc2BIRbwQ+\nCTxwQanmpA/9M7M63ufl+rBWtT11Rn30LWPjLYwerb8gIn4wdvphSXdKuiIiTo3Pk7QPOFYNTwPL\nK093VhazbgyXVVdfqv5dXGXM1ZIWa25v68oVS+9/1uOfqP3+KPj+Whv/JMNqecamFVw+v/Uqu7/6\n9S67vfo8i0V52v7+5r8/68Yr59XNH5n399ftei4B+6rxAk0pYu0H4pI2AP8b+GfAd4FvALeMv1Aq\naRPwbESEpOuAL0TEwsTtRERccN9desUpOHL5i3/PTHr/j+Cuj0TEnRd6f/MmKcqeHIk21rNUWS5R\nMqet3KWZ6u6vzTVvK1Pbt9WWNvdBxn0+b7M4xrWP1CPieUm7gS8BFwF3R8RRSbuqy/cC7wZ+WdLz\nwBng5tIAZmbWnpL2CxHxMPDwxHl7x07vAfa0G232xtsXZn3lfV6uD2vlT5SamfXIoIv6ev+NbFbC\n+7xcH9Zq0EXdzKxvBl3U+/CeVLM63ufl+rBWgy7qZmZ9M+ii3of+mVkd7/NyfVirQRd1M7O+GXRR\n70P/zKyO93m5PqzVoIu6mVnfDLqo96F/ZlbH+7xcH9Zq0EXdzKxvBl3U+9A/M6vjfV6uD2s16KJu\nZtY3gy7qfeifmdXxPi/Xh7UadFE3M+ubQRf1PvTPzOp4n5frw1oNuqibmfXNoIt6H/pnZnW8z8v1\nYa0GXdTNzPqmtqhLuknSU5KelvQbq8y5o7r8kKRt7cecjT70z8zqeJ+X68NarVnUJV0E/C5wE3AN\ncIukn52YswN4bURcDXwA+NSMss7C1q4DmM2B93m5db9WdY/UrwOeiYhjEfFj4D7gnRNzdgL3AkTE\nAWCjpE2tJ52NjV0HMJsD7/Ny636t6or6VcDxsfGJ6ry6OZsvPJqZmTW1oebyKLwdnef1zsPf/i38\nwg/gkrOrzznyssIbW2gjkVlyC10HWEcWug5woeqK+neALWPjLYweia81Z3N13jkktVTs/0fJpD2S\n9tRNkvRLF56nbZO/I1eZ1dp6lirJVT+n3dxt3V+ba97mGrRzW+3u83b2QdZ9Pv+aULYOpeqK+v8E\nrpa0AHwX+AXglok5DwK7gfskbQdOR8TJyRuKiHaTm5nZOdYs6hHxvKTdwJeAi4C7I+KopF3V5Xsj\nYr+kHZKeAf4aeO/MU5uZ2VSKmPMzeDMzm5mZf6JU0hZJj0p6UtITkj406/ssJekiSQclPdR1FgBJ\nGyXdL+mopCNVO6vrTB+ujtthSZ+TVPoidJsZ7pF0UtLhsfOukPRlSX8u6RFJc38r2iq5Pl4dv0OS\nvijplV1nGrvsX0o6K+mKDJkk/Uq1Vk9I+k9dZ5K0VdKfVTXhMUn/aM6ZptbKpnt9Hn8m4MfAhyPi\n9cB24F9MfoCpQ7cBR5jpu3Ua+QSwPyJ+Fvg54GiXYSRdBfwK8KaIeAOjFtzNHUT5DKMPwI3718CX\nI+J1wJ9U43mblusR4PUR8Ubgz4F/kyATkrYAbwf+z5zzwJRMkm5k9BmXn4uIfwD8l64zAf8Z+K2I\n2Ab8+2o8T6vVykZ7feZFPSK+FxHL1ekfMipUr571/daRtBnYAdxF2y8/n4fqEd0/iYh7YPR6RkQ8\n13EsGL3ucqmkDcClrPLOplmKiK8B3584+4UPvVX/vmuuoZieKyK+HBErb7c9wJw/s7HKWgH8V+Bf\nzTPLilUy/TLwH6oPNRIRf5kg01lg5ZnVRua811eplVfRcK/P9Q96Ve+i2cZos3ftd4BfZ3QgM3gN\n8JeSPiPpcUn/TdKlXQaKiO8Avw38BaN3P52OiD/uMtOYTWPvsjoJZPwU8/uA/V2HkPRO4ERE/K+u\ns4y5GvinVbtjSdI/7DoQ8KvAxyX9BfBx5v8s6wUTtbLRXp9bUZd0GXA/cFv1W6gzkn4eeDYiDpLg\nUXplA3AtcGdEXMvonURdtBReIOlyRo8SFhg9u7pM0j/vMtM0MXq1P0sLDQBJ/xb4m4j4XMc5LgV+\nE/it8bM7ijNuA3B5RGxn9ODqCx3nAfgg8KsR8feADwP3dBGiqpV/wKhW/mD8spK9PpeiLuliRiF/\nPyIemMd91rge2Cnp28DngbdK+mzHmU4wejT1WDW+n1GR79LbgG9HxF9FxPPAFxmtXQYnJV0JIOlV\nwLMd53mBpPcwau1l+AX49xn9Uj5U7ffNwDcl/d1OU432+xcBqj1/VtJPdRuJWyPiD6vT9zP621dz\nNVYrf2+sVjba6/N494uAu4EjEXH7rO+vRET8ZkRsiYjXMHrh7ysRcWvHmb4HHJf0uuqstwFPdhgJ\nRi+qbZf08uo4vo3RC8sZPAisfPLvl4AMDxaQdBOjR57vjIj/23WeiDgcEZsi4jXVfj8BXBsRXf8S\nfAB4K0C1518aEX/VbSS+K+mG6vRbGb3QPTdr1Mpmez0iZvoF/GNGfetl4GD1ddOs77dBvhuAB7vO\nUWV5I/AYcIjRo5hXJsj0MUYv2Bxm9CLNxR1k+Dyjnv7fMPrjce8FrgD+mNEP3iPAxgS53gc8zeiX\n4cpev7OjTP9vZa0mLv8WcEXXmYCLgd+r9tU3gcUEe+otjD5Fv8zob5Fsm3OmqbWy6V73h4/MzHrE\n/52dmVmPuKibmfWIi7qZWY+4qJuZ9YiLuplZj7iom5n1iIu6mVmPuKibmfXI/wdWgSw61UfO6wAA\nAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f542600fa90>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"notes_seules = notes[ds_name]\n",
"notes_seules.hist(bins = (notes_seules.max() - notes_seules.min())*2)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes_questions = notes[sous_exo]\n",
"notes_analysis = notes_questions.describe()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>1.1</th>\n",
" <th>1.2</th>\n",
" <th>2.A.1</th>\n",
" <th>2.A.2</th>\n",
" <th>2.A.3.a</th>\n",
" <th>2.A.3.b</th>\n",
" <th>2.A.3.c</th>\n",
" <th>2.B.1</th>\n",
" <th>2.B.2</th>\n",
" <th>3.A.1</th>\n",
" <th>3.A.2</th>\n",
" <th>3.B.1</th>\n",
" <th>3.B.2</th>\n",
" <th>3.B.3</th>\n",
" <th>4.A.1</th>\n",
" <th>4.A.1.a</th>\n",
" <th>4.A.1.b</th>\n",
" <th>4.B.1</th>\n",
" <th>4.B.2</th>\n",
" <th>4.B.3</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 1.1 1.2 2.A.1 2.A.2 2.A.3.a 2.A.3.b 2.A.3.c 2.B.1 2.B.2 3.A.1 \\\n",
"count NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
"\n",
" 3.A.2 3.B.1 3.B.2 3.B.3 4.A.1 4.A.1.a 4.A.1.b 4.B.1 4.B.2 \\\n",
"count NaN NaN NaN NaN NaN NaN NaN NaN NaN \n",
"\n",
" 4.B.3 \n",
"count NaN "
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# J'aimerai récupérer le nom des questions qui ont été le moins répondus\n",
"notes_analysis[:1][notes_analysis[:1] == 25]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}