2015-2016/3e/DM/DM_16_03_23/exo_frac.tex

43 lines
1.5 KiB
TeX
Raw Normal View History

2017-06-16 06:48:54 +00:00
Faire les calculs suivants en détaillant les étapes (penser à simplifier les fractions quand c'est possible).
\begin{parts}
\begin{multicols}{4}
\Block{set e = Expression.random("{a} / {b} + {c} / {d}", ["gcd({b},{d})==1"], val_min = 2, val_max=15)}
\part $A = \Var{e}$
\begin{solution}
\begin{eqnarray*}
\Var{e.simplify().explain() | calculus(name = "A")}
\end{eqnarray*}
\end{solution}
\columnbreak
\Block{set e = Expression.random("{a} / {b} * {c}/{d}", ["{b} > 1", "{d} > 1"])}
\part $B = \Var{e}$
\begin{solution}
\begin{eqnarray*}
\Var{e.simplify().explain() | calculus(name = "B")}
\end{eqnarray*}
\end{solution}
\columnbreak
\Block{set e = Expression.random("{a} / {b} + {c} / {b}", ["{b} > 1"])}
\part $C = \Var{e}$
\begin{solution}
\begin{eqnarray*}
\Var{e.simplify().explain() | calculus(name = "C")}
\end{eqnarray*}
\end{solution}
\columnbreak
\Block{set e = Expression.random("{a} / {b} * {c}", ["{b} > 1","{c} > 1", "gcd({c},{b})==1"])}
\part $D = \Var{e}$
\begin{solution}
\begin{eqnarray*}
\Var{e.simplify().explain() | calculus(name = "D")}
\end{eqnarray*}
\end{solution}
\end{multicols}
\end{parts}