89 lines
3.6 KiB
TeX
89 lines
3.6 KiB
TeX
|
\documentclass[a4paper,12pt]{/media/documents/Cours/Prof/Enseignements/tools/style/classExo}
|
||
|
\usepackage{/media/documents/Cours/Prof/Enseignements/2015_2016}
|
||
|
|
||
|
% Title Page
|
||
|
\titre{Introduction à la trigonométrie}
|
||
|
\classe{Troisième}
|
||
|
\date{mars 2014}
|
||
|
|
||
|
\pagestyle{empty}
|
||
|
\geometry{left=5mm,right=5mm, bottom= 10mm, top=10mm}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
|
||
|
Compléter le tableau suivant en fonction des triangles.
|
||
|
|
||
|
\begin{tabular}{|c|*{6}{c|}}
|
||
|
\hline
|
||
|
Triangle & Hypoténuse & coté adjacent & coté opposé & angle & $\frac{\mbox{coté adjacent}}{\mbox{Hypoténuse}}$ & $\frac{\mbox{coté opposé}}{\mbox{Hypoténuse}}$ \\
|
||
|
\hline
|
||
|
ABC & ...... = ...... & ...... = ...... & ...... = ...... & ...... = ...... & $\frac{......}{......} = ......$ & $\frac{......}{......} = ......$ \\
|
||
|
\hline
|
||
|
DEF & ...... = ...... & ...... = ...... & ...... = ...... & ...... = ...... & $\frac{......}{......} = ......$ & $\frac{......}{......} = ......$ \\
|
||
|
\hline
|
||
|
GHI & ...... = ...... & ...... = ...... & ...... = ...... & ...... = ...... & $\frac{......}{......} = ......$ & $\frac{......}{......} = ......$ \\
|
||
|
\hline
|
||
|
JKL & ...... = ...... & ...... = ...... & ...... = ...... & ...... = ...... & $\frac{......}{......} = ......$ & $\frac{......}{......} = ......$ \\
|
||
|
\hline
|
||
|
MNP & ...... = ...... & ...... = ...... & ...... = ...... & ...... = ...... & $\frac{......}{......} = ......$ & $\frac{......}{......} = ......$ \\
|
||
|
\hline
|
||
|
\end{tabular}
|
||
|
|
||
|
\begin{center}
|
||
|
\includegraphics[scale=0.4]{./fig/triangles}
|
||
|
\end{center}
|
||
|
|
||
|
\begin{Exo}
|
||
|
|
||
|
\textbf{Avec la figure suivante, calculer la longueur $BA$.}
|
||
|
\\[0.3cm]
|
||
|
|
||
|
\begin{minipage}[h]{0.2\textwidth}
|
||
|
\includegraphics[scale=0.15]{./fig/triangleABC}
|
||
|
\end{minipage}
|
||
|
\begin{minipage}[h]{0.8\textwidth}
|
||
|
\textit{Questions à se poser}
|
||
|
\begin{itemize}
|
||
|
\item On connait
|
||
|
\begin{center}
|
||
|
hypoténuse\hspace{0.5cm} opposé \hspace{0.5cm}adjacent \hspace{0.5cm}angle
|
||
|
\end{center}
|
||
|
\item On cherche
|
||
|
\begin{center}
|
||
|
hypoténuse\hspace{0.5cm} opposé \hspace{0.5cm}adjacent \hspace{0.5cm}angle
|
||
|
\end{center}
|
||
|
\end{itemize}
|
||
|
\begin{itemize}
|
||
|
\item On utilise la formule
|
||
|
\begin{eqnarray*}
|
||
|
\cos( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.5cm}
|
||
|
\sin( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.5cm}
|
||
|
\tan( \widehat{BAC}) = \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}}
|
||
|
\end{eqnarray*}
|
||
|
|
||
|
\end{itemize}
|
||
|
\end{minipage}
|
||
|
\textit{Rédaction:}
|
||
|
|
||
|
\noindent\fbox{\parbox{\linewidth-2\fboxrule-2\fboxsep}{
|
||
|
.\\
|
||
|
\parbox{1cm}{\dotfill} est un triangle rectangle en \parbox{0.5cm}{\dotfill} donc
|
||
|
\begin{eqnarray*}
|
||
|
\parbox{1cm}{\dotfill}(\widehat{BAC}) &=& \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm} \textit{(avec les lettres)}\\[0.3cm]
|
||
|
\parbox{1cm}{\dotfill}(\parbox{1cm}{\dotfill}) &=& \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm} \textit{(avec les chiffres)} \\[0.3cm]
|
||
|
\parbox{1cm}{\dotfill} &=& \frac{\parbox{2cm}{\dotfill}}{\parbox{2cm}{\dotfill}} \hspace{0.7cm} \textit{(avec les chiffres)} \\[0.3cm]
|
||
|
BA & = & \parbox{1cm}{\dotfill} \times \parbox{1cm}{\dotfill} = \parbox{1cm}{\dotfill}
|
||
|
\end{eqnarray*}
|
||
|
Donc $BA = \parbox{1cm}{\dotfill}$
|
||
|
}}
|
||
|
\end{Exo}
|
||
|
|
||
|
\end{document}
|
||
|
|
||
|
%%% Local Variables:
|
||
|
%%% mode: latex
|
||
|
%%% TeX-master: "master"
|
||
|
%%% End:
|
||
|
|