2015-2016/3e/DS/BB_16_02_15/Bilan/Bilan309.ipynb

817 lines
431 KiB
Plaintext
Raw Normal View History

2017-06-16 06:48:54 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pandas as pd\n",
"from opytex import texenv\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"plt.style.use(\"seaborn-notebook\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Informations sur le devoir"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"{'classe': '309', 'date': '15 février 2016', 'titre': 'Brevet Blanc Février'}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds_name = \"BB_16_02_15\"\n",
"classe = \"309\"\n",
"\n",
"latex_info = {}\n",
"latex_info['titre'] = \"Brevet Blanc Février\"\n",
"latex_info['classe'] = \"309\"\n",
"latex_info['date'] = \"15 février 2016\"\n",
"latex_info"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Import et premiers traitements"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [],
"source": [
"notes = pd.ExcelFile(\"./../../../../notes/\"+classe+\".xlsx\")\n",
"notes.sheet_names\n",
"notes = notes.parse(ds_name)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"ds_name = \"Brevet blanc Fevrier\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Brevet blanc Fevrier', 'Présentation', 'Exercice 1',\n",
" 'Comprendre le programme de calcul', 'Programme à l'envers',\n",
" 'Calcul literral', 'Exercice 2', 'Construction', 'Pythagore',\n",
" 'Choix proposition', 'Exercice 3', 'Exercice 4',\n",
" 'Probabilité « normale »', 'Probabilité « changement »', '2 épreuves',\n",
" 'Exercice 5', 'Divisibilité', 'PGCD', 'Réduction', 'Divisibilité',\n",
" 'Utilisation du PGCD', 'Exercice 6', 'Extraire l'information',\n",
" 'Argumentation', 'Résolution', 'Exercice 7', 'Lecture graphique',\n",
" 'Moyenne', 'Total', 'Formule tableur (somme)',\n",
" 'Formule tableur (moiyenne)'],\n",
" dtype='object')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes.index"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"notes = notes.T"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"#notes = notes.drop('av_arrondi', axis=1)\n",
"#notes = notes.drop('num_sujet', axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"barem = notes[:1]\n",
"notes = notes[1:]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Brevet blanc Fevrier</th>\n",
" <th>Présentation</th>\n",
" <th>Exercice 1</th>\n",
" <th>Comprendre le programme de calcul</th>\n",
" <th>Programme à l'envers</th>\n",
" <th>Calcul literral</th>\n",
" <th>Exercice 2</th>\n",
" <th>Construction</th>\n",
" <th>Pythagore</th>\n",
" <th>Choix proposition</th>\n",
" <th>...</th>\n",
" <th>Exercice 6</th>\n",
" <th>Extraire l'information</th>\n",
" <th>Argumentation</th>\n",
" <th>Résolution</th>\n",
" <th>Exercice 7</th>\n",
" <th>Lecture graphique</th>\n",
" <th>Moyenne</th>\n",
" <th>Total</th>\n",
" <th>Formule tableur (somme)</th>\n",
" <th>Formule tableur (moiyenne)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>ABDOU Farida</th>\n",
" <td>16.0</td>\n",
" <td>2.5</td>\n",
" <td>1.5</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.5</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>3.5</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ABOU BACAR Djaha</th>\n",
" <td>22.0</td>\n",
" <td>2.5</td>\n",
" <td>3.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>3.5</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>3.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AHAMADA Nabaouya</th>\n",
" <td>16.5</td>\n",
" <td>3.0</td>\n",
" <td>2.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>0.5</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>5.5</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AHAMADI Faina</th>\n",
" <td>5.0</td>\n",
" <td>3.0</td>\n",
" <td>0.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ALI Mardhuia</th>\n",
" <td>23.0</td>\n",
" <td>4.0</td>\n",
" <td>2.5</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>3.5</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>1.5</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>4.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 31 columns</p>\n",
"</div>"
],
"text/plain": [
" Brevet blanc Fevrier Présentation Exercice 1 \\\n",
"ABDOU Farida 16.0 2.5 1.5 \n",
"ABOU BACAR Djaha 22.0 2.5 3.0 \n",
"AHAMADA Nabaouya 16.5 3.0 2.0 \n",
"AHAMADI Faina 5.0 3.0 0.0 \n",
"ALI Mardhuia 23.0 4.0 2.5 \n",
"\n",
" Comprendre le programme de calcul Programme à l'envers \\\n",
"ABDOU Farida NaN NaN \n",
"ABOU BACAR Djaha NaN NaN \n",
"AHAMADA Nabaouya NaN NaN \n",
"AHAMADI Faina NaN NaN \n",
"ALI Mardhuia NaN NaN \n",
"\n",
" Calcul literral Exercice 2 Construction Pythagore \\\n",
"ABDOU Farida NaN 0.5 NaN NaN \n",
"ABOU BACAR Djaha NaN 3.5 NaN NaN \n",
"AHAMADA Nabaouya NaN 0.0 NaN NaN \n",
"AHAMADI Faina NaN 0.0 NaN NaN \n",
"ALI Mardhuia NaN 3.5 NaN NaN \n",
"\n",
" Choix proposition ... Exercice 6 \\\n",
"ABDOU Farida NaN ... 0.0 \n",
"ABOU BACAR Djaha NaN ... 0.0 \n",
"AHAMADA Nabaouya NaN ... 0.5 \n",
"AHAMADI Faina NaN ... 0.0 \n",
"ALI Mardhuia NaN ... 1.5 \n",
"\n",
" Extraire l'information Argumentation Résolution \\\n",
"ABDOU Farida NaN NaN NaN \n",
"ABOU BACAR Djaha NaN NaN NaN \n",
"AHAMADA Nabaouya NaN NaN NaN \n",
"AHAMADI Faina NaN NaN NaN \n",
"ALI Mardhuia NaN NaN NaN \n",
"\n",
" Exercice 7 Lecture graphique Moyenne Total \\\n",
"ABDOU Farida 3.5 NaN NaN NaN \n",
"ABOU BACAR Djaha 3.0 NaN NaN NaN \n",
"AHAMADA Nabaouya 5.5 NaN NaN NaN \n",
"AHAMADI Faina 0.0 NaN NaN NaN \n",
"ALI Mardhuia 4.0 NaN NaN NaN \n",
"\n",
" Formule tableur (somme) Formule tableur (moiyenne) \n",
"ABDOU Farida NaN NaN \n",
"ABOU BACAR Djaha NaN NaN \n",
"AHAMADA Nabaouya NaN NaN \n",
"AHAMADI Faina NaN NaN \n",
"ALI Mardhuia NaN NaN \n",
"\n",
"[5 rows x 31 columns]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes.head()\n",
"#barem"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Supression des notes inutiles "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes = notes[notes[ds_name].notnull()]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes = notes.astype(float)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Traitement des notes"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Brevet blanc Fevrier', 'Présentation', 'Exercice 1',\n",
" 'Comprendre le programme de calcul', 'Programme à l'envers',\n",
" 'Calcul literral', 'Exercice 2', 'Construction', 'Pythagore',\n",
" 'Choix proposition', 'Exercice 3', 'Exercice 4',\n",
" 'Probabilité « normale »', 'Probabilité « changement »', '2 épreuves',\n",
" 'Exercice 5', 'Divisibilité', 'PGCD', 'Réduction', 'Divisibilité',\n",
" 'Utilisation du PGCD', 'Exercice 6', 'Extraire l'information',\n",
" 'Argumentation', 'Résolution', 'Exercice 7', 'Lecture graphique',\n",
" 'Moyenne', 'Total', 'Formule tableur (somme)',\n",
" 'Formule tableur (moiyenne)'],\n",
" dtype='object')"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes.T.index"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Liste des exercices (non noté en compétences)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"['Exercice 1',\n",
" 'Exercice 2',\n",
" 'Exercice 3',\n",
" 'Exercice 4',\n",
" 'Exercice 5',\n",
" 'Exercice 6',\n",
" 'Exercice 7']"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list_exo = [\"Exercice \"+str(i+1) for i in range(7)]\n",
"list_exo"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Les autres types de notes (presentation, malus...) qui ne sont pas en compétences"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"autres_notes = [\"Présentation\"]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes[list_exo] = notes[list_exo].applymap(lambda x:round(x,2))\n",
"#notes[list_exo]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Les éléments avec notes et les éléments par compétences (sous_exo)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"['Comprendre le programme de calcul',\n",
" \"Programme à l'envers\",\n",
" 'Calcul literral',\n",
" 'Construction',\n",
" 'Pythagore',\n",
" 'Choix proposition',\n",
" 'Probabilité «\\xa0normale\\xa0»',\n",
" 'Probabilité «\\xa0changement\\xa0»',\n",
" '2 épreuves',\n",
" 'Divisibilité',\n",
" 'PGCD',\n",
" 'Réduction',\n",
" 'Divisibilité',\n",
" 'Utilisation du PGCD',\n",
" \"Extraire l'information\",\n",
" 'Argumentation',\n",
" 'Résolution',\n",
" 'Lecture graphique',\n",
" 'Moyenne',\n",
" 'Total',\n",
" 'Formule tableur (somme)',\n",
" 'Formule tableur (moiyenne)']"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"item_avec_note = list_exo + [ds_name] + autres_notes\n",
"sous_exo = [i for i in notes.T.index if i not in item_avec_note]\n",
"sous_exo"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def toRepVal(val):\n",
" if pd.isnull(val):\n",
" return \"\\\\NoRep\"\n",
" elif val == 0:\n",
" return \"\\\\RepZ\"\n",
" elif val == 1:\n",
" return \"\\\\RepU\"\n",
" elif val == 2:\n",
" return \"\\\\RepD\"\n",
" elif val == 3:\n",
" return \"\\\\RepT\"\n",
" else:\n",
" return val"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"notes[item_avec_note] = notes[item_avec_note].fillna(\".\")\n",
"#notes"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"31"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(notes.T.index)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Un peu de statistiques"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"count 30.000000\n",
"mean 16.616667\n",
"std 6.729609\n",
"min 5.000000\n",
"25% 11.500000\n",
"50% 16.000000\n",
"75% 21.375000\n",
"max 29.500000\n",
"Name: Brevet blanc Fevrier, dtype: float64"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes[ds_name].describe()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.text.Text at 0x7fc141e23550>"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA60AAAG5CAYAAABlfdJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuwbndZH/Dvk0QucpNGxUpqwNgE0VJAoSCd5qCOUHTA\nXhg1UqtVeyORFGWQdiAHWjvtH2CdE53OKFKqoFbqBawUL5hjlQEiIVwayKHHoEaFOmkopc5YPPz6\nx353ziG8Ode19l7PXp/PzJm13332Xu9vv9937XOetd7v3jXGCAAAACzRRfu9AAAAALgvhlYAAAAW\ny9AKAADAYhlaAQAAWCxDKwAAAItlaAUAAGCxLpn7Dqrqw0n+d5JPJfnkGOPJc98nAAAAB8PsQ2t2\nhtVDY4y79+C+AAAAOED24uXBtUf3AwAAwAGzF8PkSPKWqrq5qr57D+4PAACAA2IvXh78VWOMj1TV\n5yX51ar6wBjjt+7rg6tq7MGaAAAA2AdjjDqXj599aB1jfGSz/ZOq+vkkT05yn0Pr5mPnXhYzqCrZ\nNSa/vubK7tixY7nqqiS5cuo95/bbkyuvnHq/PTn2epNfX7LrTX59VZ3TvJpk5pcHV9VnV9WDN28/\nKMnXJXn/nPcJAADAwTH3ldZHJPn5zUt+L0nyujHGr8x8nwAAABwQsw6tY4w7kjx+zvtgOW644Yb9\nXgIXQH59ya43+fUmv75k15v81qWW9lrwqhpLWxPAGum0AgBT2/SRz6nY6venMpnDhw/v9xK4APLr\nS3a9ya83+fUlu97kty6GVgAAABbLy4MB2MrLgwGAqXl5MAAAAAeKoZXJ6Bb0Jr++ZNeb/HqTX1+y\n601+62JoBQAAYLF0WgHYSqcVAJiaTisAAAAHiqGVyegW9Ca/vmTXm/x6k19fsutNfutiaAUAAGCx\ndFoB2EqnFQCYmk4rAAAAB4qhlcnoFvQmv75k15v8epNfX7LrTX7rYmgFAABgsXRaAdhKpxUAmJpO\nKwAAAAeKoZXJ6Bb0Jr++ZNeb/HqTX1+y601+62JoBQAAYLF0WgHYSqcVAJiaTisAAAAHiqGVyegW\n9Ca/vmTXm/x6k19fsutNfutiaAUAAGCxdFoB2EqnFQCYmk4rAAAAB4qhlcnoFvQmv75k15v8epNf\nX7LrTX7rYmgFAABgsXRaAdhKpxUAmJpOKwAAAAeKoZXJ6Bb0Jr++ZNeb/HqTX1+y601+62JoBQAA\nYLF0WgHYSqcVAJiaTisAAAAHiqGVyegW9Ca/vmTXm/x6k19fsutNfutiaAUAAGCxdFoB2EqnFQCY\nmk4rAAAAB4qhlcnoFvQmv75k15v8epNfX7LrTX7rYmgFAABgsXRaAdhKpxUAmJpOKwAAAAeKoZXJ\n6Bb0Jr++ZNeb/HqTX1+y601+62JoBQAAYLF0WgHYSqcVAJiaTisAAAAHiqGVyegW9Ca/vmTXm/x6\nk19fsutNfutiaAUAAGCxdFoB2EqnFQCYmk4rAAAAB4qhlcnoFvQmv75k15v8epNfX7LrTX7rYmgF\nAABgsXRaAdhKpxUAmJpOKwAAAAeKoZXJ6Bb0Jr++ZNeb/HqTX1+y601+62JoBQAAYLF0WgHYSqcV\nAJiaTisAAAAHiqGVyegW9Ca/vmTXm/x6k19fsutNfutiaAUAAGCxdFoB2EqnFQCYmk4rAAAAB4qh\nlcnoFvQmv75k15v8epNfX7LrTX7rYmgFAABgsXRaAdhKpxUAmJpOKwAAAAeKoZXJ6Bb0Jr++ZNeb\n/HqTX1+y601+62JoBQAAYLF0WgHYSqcVAJiaTisAAAAHyp4MrVV1UVXdUlVv3Iv7Y3/oFvQmv75k\n15v8epNfX7LrTX7rsldXWl+Q5LY9ui8AAAAOiNk7rVV1WZLXJPmBJC8cYzz7DB+v0wqwADqtAMDU\nltpp/cEkL0piEgUAAOCcXDLnzqvq65N8dIxxa1UdSnJWE3XVyQ+7+uqrc+jQoXtet2673O2p3YIl\nrMdWfmvZ7r499X6PHDmy2fvu9vBE22smXWf37e7b+70O2/Pb7r693+uwPfftTTfdlJtuumnf12Er\nv4O+PXToUI4ePZoLMevLg6vqXyd5XpI/T/LAJA9J8nNjjG87zed4eXBThw8fvufJST/y62uu7Lw8\neG849nqTX1+y601+fZ3Py4P37Pe0VtXVSb5XpxWgB0MrADC1pXZaAQAA4Lzs2dA6xjh6pqus9OYl\nGr3Jry/Z9Sa/3uTXl+x6k9+6uNIKAADAYu1Zp/Vs6bQCLINOKwAwNZ1WAAAADhRDK5PRLehNfn3J\nrjf59Sa/vmTXm/zWxdAKAADAYum0ArCVTisAMDWdVgAAAA4UQyuT0S3oTX59ya43+fUmv75k15v8\n1sXQCgAAwGLptAKwlU4rADA1nVYAAAAOFEMrk9Et6E1+fcmuN/n1Jr++ZNeb/NbF0AoAAMBi6bQC\nsJVOKwAwNZ1WAAAADhRDK5PRLehNfn3Jrjf59Sa/vmTXm/zWxdAKAADAYum0ArCVTisAMDWdVgAA\nAA4UQyuT0S3oTX59ya43+fUmv75k15v81sXQCgAAwGLptAKwlU4rADA1nVYAAAAOFEMrk9Et6E1+\nfcmuN/n1Jr++ZNeb/NbF0AoAAMBi6bQCsJVOKwAwNZ1WAAAADhRDK5PRLehNfn3Jrjf59Sa/vmTX\nm/zWxdAKAADAYum0ArCVTisAMDWdVgAAAA4UQyuT0S3oTX59ya43+fUmv75k15v81sXQCgAAwGLp\ntAKwlU4rADA1nVYAAAAOFEMrk9Et6E1+fcmuN/n1Jr++ZNeb/NbF0AoAAMBi6bQCsJVOKwAwNZ1W\nAAAADhRDK5PRLehNfn3Jrjf59Sa/vmTXm/zWxdAKAADAYum0ArCVTisAMDWdVgAAAA4UQyuT0S3o\nTX59ya43+fUmv75k15v81sXQCgAAwGLptAKwlU4rADA1nVYAAAAOFEMrk9Et6E1+fcmuN/n1Jr++\nZNeb/NbF0AoAAMBi6bQCsJVOKwAwNZ1WAAAADhRDK5PRLehNfn3Jrjf59Sa/vmTXm/zWxdAKAADA\nYum0ArCVTisAMDWdVgAAAA4UQyuT0S3oTX59ya43+fUmv75k15v81sXQCgAAwGLptAKwlU4rADA1\nnVYAAAAOFEMrk9Et6E1+fcmuN/n1Jr++ZNeb/NbF0AoAAMBi6bQCsJVOKwAwNZ1WAAAADhRDK5PR\nLehNfn3Jrjf59Sa/vmTXm/zWxdAKAADAYum0ArCVTisAMDWdVgAAAA4UQyuT0S3oTX59ya43+fUm\nv75k15v81sXQCgAAwGLN2mmtqvsn+c0k90tySZI3jDFefobP0WkFWACdVgBgaufTab1krsUkyRjj\nz6rq6WOMP62qi5P8dlW9eYzxzjnvFwAAgINh9pcHjzH+dPPm/bMzJLuMekDpFvQmv75k15v8epNf\nX7LrTX7rMuuV1iSpqouSvCvJFUl+eIxx89z3CWfjxIkTOX78+Cz7vuKKK3LxxRfPsm/m5XkBALAs\nsw+tY4xPJXlCVT00yS9U1WPHGLed7nOqTr7E+eqrr86hQ4fuOZtiu9zt7p/9XsfZbo8fP56rrnpF\nkocnuS47jmy2F3L77tx++8ty5ZVXLuLrPNttt/zm2t5111258cZvSPLoTPN82L19R6699kguvfTS\nRXydZ7M9cmR3/bvbwxNtr9nXr8vW1tZ2d7trv9dhe37bXfu9DtvTbw8dOpSjR4/mQsz6g5g+486q\nXpbkE2OMV53mY/wgJvaEHzLDNp4XJ3ksAICpnc8PYpq101pVn1tVD9u8/cAkX5vkg3PeJ/vn3me9\n6EV+fcmuN/n1Jr++ZNeb/Nblkpn3/xeTvHbTa70oyc+MMX555vsEAADggNjTlwefDS8PZq946SPb\neF6c5LEAAKa2uJcHAwAAwIUwtDIZ3YLe5NeX7HqTX2/y60t2vclvXQytAAAALJZOK6ulr8c2nhcn\neSwAgKnptAIAAHCgGFq
"text/plain": [
"<matplotlib.figure.Figure at 0x7fc141f5d908>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#notes_seules = notes[ds_name]\n",
"ax = notes[ds_name].hist(bins = barem[ds_name][0], range=(0,barem[ds_name][0]), figsize = (16,7), )\n",
"ax.set_xlabel(\"Notes\")\n",
"ax.set_ylabel(\"Effectif\")\n",
"#notes_seules.hist()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7fc12ae5fa20>"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA8QAAAGrCAYAAAAGkV5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdwVOmZ6P/vOaeTUisLAQKBQOQ4hCHnnAdmYAKz9uy6\nrre83nLZ3j9u7a3avXVv1dat+7PX116v19dr30nMDDBDzkHAkHMSEkIICYEiyqHT6RN+f7RoEEgg\nhCJ6P1VTdrdOd79dUjfnOc/zPo9kmiaCIAiCIAiCIAiC0NPInb0AQRAEQRAEQRAEQegMIiAWBEEQ\nBEEQBEEQeiQREAuCIAiCIAiCIAg9kgiIBUEQBEEQBEEQhB5JBMSCIAiCIAiCIAhCjyQCYkEQBEEQ\nBEEQBKFHeqWAWJKkv0iSVCpJ0s0XHPM7SZLuSpJ0XZKkca+/REEQBEEQBEEQBEFoe6+aIf4UWNzc\nDyVJWgoMMk0zFfgx8MfXWJsgCIIgCIIgCIIgtJtXCohN0zwNVL3gkNXAFw3HXgAiJUnq1frlCYIg\nCIIgCIIgCEL7aOs9xH2Bh0/dLmy4TxAEQRAEQRAEQRC6lLYOiKUm7jPb+DUEQRAEQRAEQRAE4bVZ\n2vj5CoB+T91OAope9iBJkkTQLAiCIAiCIAiC8AYzTbOpBGqnak1ALNF0JhhgN/B3wBZJkqYA1aZp\nlrbkSU1TxMRvElM3MVQDw2dg+kxM3cQ0TQyvgek3OXb+GNfvXgcF/ul//hP/8ot/Yfbs2UyeOxkl\nXEGSutxnRWgHkiSJz34PJn7/PZf43fds4vff8/iqffz7//fv/PJffknF3QqkZkMJ4U1RUV3Btwe/\nRfWrwfv++//47523oBd4pYBYkqSvgTlArCRJD4B/BmyAaZrmn0zT3C9J0jJJknIAF/BJWy9Y6JpM\nw8TwNQTAqompNQTAj2+bJpIsIdtl8svzuZp/FWywbuE6/ul//hNaiMaJUydQXSpT503FGmVFtosx\n2YIgCIIgCN2Z4Te4n3Efr+oFICw0rJNXJLS33cd3k5mTGbjRcDrvsDk6b0Ev8UoBsWmaH7bgmJ+2\nfjlCd2EagQyw6WsIep8JgB+T7BIW55M/s9r6WrYf3Q7A0IFDSR2QCkCvPr0oLi3m9M3TuOpdzJk3\nB1uMDYvTgqSIq4iCIAiCIAjdkVatkZ2djebQOnspQjsrflTM1/u+xq/5AZCQMBvaSX285mP+6z/+\n185cXrPaeg+x8IYKBsBqQ9DrD/xx6z4d0/dUAGxrHAA/TdM1th7ciqZpOGwOls9eDsB/+8V/470l\n7/Hptk+pc9dx5eEVvIe9LJi2AHucHWuUFSVMaf83KXS4f/7nf+7sJQidSPz+ey7xu+/ZxO+/59Dq\nNXSfTnZ+NqERofzjz/+xs5cktJPtR7aTfT87eDu5dzL5xfkADBkwhNjI2M5a2ktJXWEPhyRJZldY\nh/CEaZrB4LdRAKzq4GvY820GAmDZIbdoz+/BUwe5nnUdgA1LNzAwaWCjnz+qfMQXO79A13VMTAYn\nDGbpxKXYnXasMVYsURZkqyijFgRBEARB6OoMzcBf5uf+nftsPr6Z8SPHs3jG4s5eltDGHpY8ZMv+\nLWh6oAIg2hnNwmkL2XpwKwCyJPPzH/4cq8WKo6/jjWmqJbyBggGwajQqezb8BobHCB4nWSXk8JYF\nwE9Lz04PBsOjUkc9FwwDJMQksHLuSnYc3YGiKOQ8ymH7pe2smboGw2Ogu3Ss0VaUCAVJ7nKfJUEQ\nBEEQBKGBVq1h+A3uPLwDcmCrnPDm0HWd7w5/R15BHhAoj14wbQHDU4bzx61/DB63aMYirBZrZy2z\nRURA3EOZponpfyYDbDYEwF4DzMAxslUOBKCv0fW5pLyEg6cOAhDqCGXB1AXNHjt04FBmvDWD01dP\nE+oIpbCskK2ntvLu/HdxVDnQ63WssYFssRIiyqgFQRAEQRC6Gt2lY6omWr1GdnE2IfYQ+vfu39nL\nEtpIXkEe3x36Dt3QAYiLjuOvVv0VFouFb/Z/g6oGOktHRkQydujYzlxqi4iAuAcxVONJIyy1IejV\nTXS3TsN+dyRFatOxRx6vhx1HdwQ/MEtnLcVhf3GXuelvTaesqow7eXeIi46jrKqMrw9+zYalG4i0\nRuIr8qG5NGzRNpRIBdkiyqgFQRAEQRC6AlM30Wo1dJdOcX0xLo+LsUPHIsvifK2703Wdb/Z/Q0FJ\nARAYobZs5jJGDx0NwOmrp3lY/DB4/Jr5a7rFKFUREL/BDP+T8mfD91QA7NExdTPwByqDEtY+JciG\nYbDn+B5q6moAGDFoBKnJqS99nCRJLJ+9nMqaSsoqyxjUfxD3Htxj095NrF+ynl4JvdBqNLwFXixu\nC9ZI62tnsQVBEARBEITX97hUGiD7QaDJkiiX7v7u5N1hV9ouDDPwu02MS+TjVR+jKIGKzfuF9zl9\n5XTw+GEDh9E7vnenrPVViYD4DWL4nwS/hmqAEegOrbt1eLwNWAYltGP24J65dobcglwkJOx2+wtL\npZ9ls9pYt3Adn+/8nLyHeUwcNZHLty7zzd5vWLd4Hf1798fwBpo16HV6sOmW4hBl1IIgCIIgCJ1B\nd+sYPgPdrWOJsJB9Pxu7zU5yn+TOXprQSrqu8+XuLykpLwECTbJWz1/d6CJHnauOnUd3Bm/Lksz8\nqfM7fK2tJWoXujFDCzSa8lf58ZX48Jf58Vf5UStVtCotUK7i1pEdMhanJfBfuKVDguGc/BzOXD2D\noiiYmCyavojQkNBXeo4oZxRrFqwBICMng4XTFuLX/Ww5sIXs+9nIDhlbLxvI4Cv04Sv04a/0Y+qi\nY7kgCIIgCEJHCpZKu3WUUIWiR0XUuepITU4NZhGF7iX9bjq/+vRXwWA4KTGJX37yy0bBsG7o7Erb\nhVf1Bu+b/tZ0IsIiOny9rSUyxN2IoT01B1g1MXUT0zQxvE+aYqGA7JCRQzvvWkdVTRV7TuxBlmV0\nXWdw8mCGpwxv1XMl90lmwbQFHD5zmBtZN1gzfw17ju9hx9EdLJ25lDFDx2B1WjFDTfzV/sAVSbcl\nOLtYlFELgiAIgiC0P61Gw9RMTMNEsSjcybsDiHLp7khVVb7Y/QXlVeUAKLLCuoXrSOmf8tyxJy+d\npKC0IHg7PCScyWMmd9ha24IIiLswU39S/mz6ngmAVRMkQAoEwF2l47Jf87P96HZ8qg9FUbDb7Cye\nvvi1AtPxw8fzqOIR17Ouk5mTyfvL3ufbQ9+y/+R+PF4Pb499G8kiYYuzoXt0/KV+DJeBNbphdrFN\nFEIIgiAIgiC0F92jY3gNtHotkKgwTe7k3cFmtTGw7/OjNoWu61rmNQ6fOYzZ0HF3YNJA3l30bpNZ\n/rv5d7lw80Kj++ZNndflxyw9SwTEXYhpPDUGSTUDV9nMpzLCpokkS8h2GSWyawTATzNNk4OnDlJW\nWYYzzEmtq5ZF0xa9dsmEJEksnLaQ8upysvKyiI+JZ+PKjWw5sIXjF4/j9rqZM3kOkiShhCjIdhmt\nTsNb6MXisgQCY2fHlIoLgiAIgiD0JKZhotVo6B492MultLyUmvoaRgwagcUiwo3uQFVVPt3xKVW1\nVQBYFAvrl65vdlxWdW01e0/sRUIKBs99E/q2uiq0M4m/0E70OAAOlkE/EwA/JtklLM6u/6u6mnmV\njJwMopxRVNdWM6DvAMYMHdMmz60oCu8seIfPd37OqSunGgXFF25ewO11s3TmUmRZRpIlrJFWjBAD\nrUbDcBkYMQaWSAtKWNe7kCAIgiAIgtBdBUulNTNYsXjnviiX7k4u3LjA8YvHg7dTk1NZt2hds8dr\nmsbOtJ34VF+j+xdMW9AttyuKWtIOZBomuldHq9FQy1TUkkDzK7VSxV/pD1xdq9NB4kkTLKcFxd71\ng7iCkgLSzqUR4gjB4/VgtVhZMnNJm34owkLCWLdoHRbFwt4Te1H9KhtXbiQxLpH07HR2HN2BpmnB\n42WbjC3ehuyQ8RX78BZ
"text/plain": [
"<matplotlib.figure.Figure at 0x7fc12b1549e8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Normalisation des notes de chaque exo\n",
"notes_exo_norm = notes[list_exo + autres_notes] / barem[list_exo + autres_notes].values[0,:]\n",
"#notes_exo_norm\n",
"ax = notes_exo_norm.T.plot(color = \"gray\", legend = False, figsize = (16, 7))\n",
"d_norm = notes_exo_norm.describe()\n",
"d_norm.T[[\"min\", \"25%\", \"50%\", \"75%\", \"max\"]].plot(ax=ax, kind=\"area\", stacked = False, alpha=.1)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6YAAAHsCAYAAADB3rDIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X28HHV9//3XmwQtdyJGCioFJf6S2ipEtEC9aValFRWh\nD1utRgWxl/21NYHeXCraq2at1Z/28fvV4ol6eYNcak21aNVAFdDqSYu2CAiIEk5qiAaqRA14Q7FW\nwuf6Y+ZwNifnnJ3dndnvzsz7+XjMY3bOzs73852Z/Zyd3fnMKCIwMzMzMzMzS+WA1AGYmZmZmZlZ\nu/nA1MzMzMzMzJLygamZmZmZmZkl5QNTMzMzMzMzS8oHpmZmZmZmZpaUD0zNzMzMzMwsKR+Y2lhI\nWifp8tRxmJml4jxoZuZcaIvzgWkLSPqmpHsk/UjSj/Px28cZQ0RsjojTy1ympAMlXSJpp6T7JP1a\nmcs3s+ZocB48RdKVkvZI2i3po5KOLrMNM2uOBufCx0i6RtKdeT68UtJjymzDqucD03YI4DkR8aCI\nOCwfn1dmA5KWlbm8AfwL8GLgO4naN7N6aGoePAJ4N3BcPtwNXJwgDjOrh6bmwv8AfisiHgI8FLgU\n+EiCOGwEPjBtDy34R+mdki7pmX6rpM/2TJ8h6XpJd0m6StLjep7bKenVkm4E7pZ0gKRjJH1c0ncl\nfW/2WzhJ50j6l57X/nLPt/zfkXRB/ndJukDSN/LXf0TSgxeKPSJ+FhFvj4gvAfeNuoLMrPGamAcv\nj4iPR8TdEfFfwCbgSSOuJzNrtibmwh9FxK58chnZ58KVw68iS8EHpvanwOMknS3pqcC5wNkAkk4C\nLgJeATyE7Fv5LZIO7Hn9C4FnAbOJ4jJgJ3As8Aj2/bYq8uUeCnwW+DTwMODRwD/l85wPnAk8FXg4\ncBfwzvK6a2a2nyblwbXA1wvOa2bWq/a5UNJdwD3AhcCbBuq9pRcRHho+kCWFHwF3kr2p7wR+t+f5\nJwJ78vle0PP3dwJvmLesW4Cn9iz3nJ7nTgV2AwcsEMM5wD/nj18IXLdIrDcDT+uZfhjw3wstc97r\nbgN+LfW69uDBw2QOLcmDJ+R9eFLq9e3Bg4fJHFqSCw8Cfh94dur17WGwYTnWFmdFxBcWeiIirpV0\nK3AkcEnPU8cBZ0vakE8LOJDsW6tZt/c8/gXgWxHR77TaXwB2LPLcccAnJM0uQ8DPgKNwHamZjaax\neVDSo8l+cdgQWXmDmdliGpsL8z78RNK7ge9J+sWI+H6fGGxC+FTe9liwngBA0iuBBwDfBl7T89Rt\nwJsi4iH5cEREHBoRH+2ZJ+bNf6ykfvvVbWSnaixkF/CseW0eEhE+KDWzUTUyD0o6juxUuDdExOY+\n7ZqZNTIXzrMMOJjsFGKrCR+YtpykVcAbya5sezbwakkn5E+/F/h9SSfn8x4i6dmSDllkcV8m+wbr\nLZIOlvRASQtdhOMy4ChJ50l6gKRDZ9sgq1l4s6Rj8zaPlHTmEvE/QNLP5ZMPlPTA4r03M6t3HpT0\nCLJ6rE0R8d6BO29mlqt5LjxN0pr8oksPAv6a7DTlbYOuB0vHB6btcamye1XNDh9XdjnvDwH/KyK+\nFhHfAF4HfEjSgRFxHVmR+yZJdwLbyeoCZvV+M0Z+usZzgf9B9i3XbcAL5gcSEXcDv05W0H5HvtxO\n/vSFwKeAKyX9EPgScPL8ZfSYAf6T7FSSy4F7ZhOYmdk8TcyDvws8CtionvsSDrZazKxlmpgLHwz8\nHfAD4N+B44HTI+K/B1gvlpgiov9cC70w+1blo2Q7osh2gD+PiLHepNfMLDVJf0x2gHAfcBNwrv8Z\nmlnTSLoIOAPYHREn5H/7K7IDkJ+S1QqeGxH+csTMBjb0L6YRsT0iHh8RJwFPIPvV6hOlRWZmVgOS\nHg5sAE7KP6gtJ7vKoJlZ01wMPHPe364Efjki1pD9UvXasUdlZo1Q1qm8pwE7IuK2kpZnZlYny4BD\nJC0nu9jCtxPHY2ZWuoi4iuwWI71/+1zPlVf/DThm7IGZWSOUdWD6O2TndZuZtUpEfBv4P2Q1NP8B\n/CAiPpc2KjOzJF4OfCZ1EGZWTyPfx1TSgWQFyxcUmHe4glYzq4WIWPQS9E0l6cHAWWT3W/sh8DFJ\n6xa7bYfzoFmztTEPAkj6M+BnRW9Z5Fxo1mzD5MKRD0yBZwHXRcT3isw87MWWxkXSxMcI6eLcvn07\nq1cDrCowt5h3kballszMDKxaVWS55fH2Lo/Uys9ikJUy3BoRdwJI+gfgScASH86q3Zbvetel/P7v\nP3e/v6fcj9y2225L220k6Rzg2cDTB3ldW/cRt12/tgf7/LtP66T6LJx6nQ+jjAPTF+HTeM2svXYB\np+b30/0p8AzgmrQhmZlVRvmQTUinA68Gfi0ifposKjOrvZFqTCUdRPZrwT+UE46ZWb1ExJeBjwHX\nAzeSfWB7T9KgzMwqIGkz2b0kV0naJelcYAo4FPispK9IemfSIM2stkb6xTQifgIcWVIsE2Ht2rWp\nQyikHnFOfoz1WI/1ibOtIuINwBtSx9FPyv3IbbvtNrTddBGxboE/Xzz2QEbU1v3TbSdpPV3LNcyF\nGue5x5Ji0uvkbGnDn2Pfd8lJakytPHktQzsLrAaQXfAjTY2pmVXLebA4fya0Oqnu8+8+rTTms/Cw\nubCs28WYmZmZmZmZDcUHpvN0u93UIRRSjzi7qQPoqx7rsT5x2mRLuR+5bbfdhratHtq6f7rtJK2n\na7mGudAHpmZmZmZmZpaUa0xtIK4xtcW4tqoY15iaNZfzYHH+TGh14hrTwbjG1MzMzMzMzGrJB6bz\n1OV87HrE2U0dQF/1WI/1idMmW1trfNy22zbr1db9020naT1dyzXMhT4wNTMbgaRVkq7Pbyx/vaQf\nSjovdVxmZmZmdeIaUxuIa0xtMa6tAkkHALcDp0TEbYvM4xpTs4ZyHizOnwmtTlxjOpgkNaaSDpd0\niaRtkr4u6ZRRlmdmVnOnATsWOyg1MzMzs4WNeirvhcCnI+IxwInAttFDSqsu52PXI85u6gD6qsd6\nrE+cxu8Af5c6iMW0tcbHbbtts15t3T/ddpLW07Vcw1w49IGppMOAp0bExQARcW9E/Ki0yMzMakTS\ngcCZwCUF5u4ZOuz7j6s78vRll22em+p29/nn1Mbp6enpZO1PT08n73/bpse5vTudDpLuH8zMbHhD\n15hKOhF4D3Az2a+l1wLnR8RPlniN6wlqzjWmtpi211ZJOhP4w4g4vc98rjE1a6im50FJFwFnALsj\n4oT8b0cAHwWOA74JvCAiflhgWf5MaLXhGtPBpKgxXQ6cBLwjIk4C7gEu6Pei3m8WO51O8m9WPT3Y\n9NTUFHO6+VDO9NTUVPL+ebr4tH8p2M+LmODTeM3MSnAx8Mx5f7sA+FxErAY+D7x27FGZWTNExFAD\ncBRwa8/0U4BL+7wmJt3GjRtTh1BIqjhnZmYCZgKiwLCx4HwRMBMzMzNj74+3d3ny9/fQOaXOA3AQ\n8D3gsALzDvC+GG5417u2LLiNUu5Hbtttt6HtNuRBsl9Gv9ozfQtwVP74aOCWgssZaV2Poq37p9se\n3mCff3uHjck+C9cxFw79i2lE7AZukzT7e/MzyE7rNTNrlYj4SUQcGRE/Th2LmdmY/Xz+mZCIuAM4\nMnE8ZlZTI93HNK8zfR9wIHArcG4sUVfgeoL6c42pLabptVVlcY2pWXO1IQ9KOo7sDLnZGtM7I+Ih\nPc/viYgVBZazTyJcu3btPiVeHns8SeMNGzawaRPAbElbt4LxHmZmNrBq1ark/R103Ol02Lp1K72G\nyYUjHZgO3JgPTGvPB6a2mDZ8ICuDD0zNmqsNeXCBA9NtQCcidks6GvhCZLcR7Lccfya02vDFjwaT\n4uJHjTR75D/p6hFnN3UAfdVjPdYnTptsKfcjt+2229B2S8ze62rWFuBl+eNzgE+NO6BBtXX/dNtJ\nWk/Xcg1zoQ9MzczMzKw
"text/plain": [
"<matplotlib.figure.Figure at 0x7fc12b1a94a8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ax = notes[list_exo+autres_notes].hist(figsize = (16,8))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Index(['AHAMADI Faina', 'ALI Mardhuia', 'ALSENE ALI MADI Stela',\n",
" 'ANLI Emeline', 'CHANFI Nadhrati', 'HAMZA Samianti',\n",
" 'HOUMADI Mouslimati', 'HOUMADI Dhoirfia', 'LOUTOUFI Nachima',\n",
" 'MALIDE El-Anzize', 'SOILIHI Soifia', 'SOUFIANI Laila',\n",
" 'YOUSSOUF Sitirati'],\n",
" dtype='object')"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"notes[notes[\"Exercice 4\"] < 1].index"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## Bilan à remplir"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}