3829 lines
390 KiB
Plaintext
3829 lines
390 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import pandas as pd\n",
|
||
|
"import numpy as np\n",
|
||
|
"%matplotlib inline\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"plt.style.use(\"seaborn-notebook\")\n",
|
||
|
"#plt.style.use('ggplot')\n",
|
||
|
"from ipywidgets import interact, interactive, fixed\n",
|
||
|
"import ipywidgets as widgets\n",
|
||
|
"from IPython.display import display\n",
|
||
|
"import seaborn as sns\n",
|
||
|
"cm = sns.light_palette(\"green\", as_cmap=True)\n",
|
||
|
"\n",
|
||
|
"from repytex.tools import extract_flat_marks, get_class_ws, digest_flat_df, term, evaluation\n",
|
||
|
"from repytex.tools.bareme import tranform_scale\n",
|
||
|
"from repytex.tools.marks_plottings import *"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 0,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 0,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div id=\"my_id_menu_nb\">run previous cell, wait for 2 seconds</div>\n",
|
||
|
"<script>\n",
|
||
|
"function repeat_indent_string(n){\n",
|
||
|
" var a = \"\" ;\n",
|
||
|
" for ( ; n > 0 ; --n) {\n",
|
||
|
" a += \" \";\n",
|
||
|
" }\n",
|
||
|
" return a;\n",
|
||
|
"}\n",
|
||
|
"var update_menu_string = function(begin, lfirst, llast, sformat, send, keep_item) {\n",
|
||
|
" var anchors = document.getElementsByClassName(\"section\");\n",
|
||
|
" if (anchors.length == 0) {\n",
|
||
|
" anchors = document.getElementsByClassName(\"text_cell_render rendered_html\");\n",
|
||
|
" }\n",
|
||
|
" var i,t;\n",
|
||
|
" var text_menu = begin;\n",
|
||
|
" var text_memo = \"<pre>\\nlength:\" + anchors.length + \"\\n\";\n",
|
||
|
" var ind = \"\";\n",
|
||
|
" var memo_level = 1;\n",
|
||
|
" var href;\n",
|
||
|
" var tags = [];\n",
|
||
|
" var main_item = 0;\n",
|
||
|
" for (i = 0; i <= llast; i++) {\n",
|
||
|
" tags.push(\"h\" + i);\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" for (i = 0; i < anchors.length; i++) {\n",
|
||
|
" text_memo += \"**\" + anchors[i].id + \"--\\n\";\n",
|
||
|
"\n",
|
||
|
" var child = null;\n",
|
||
|
" for(t = 0; t < tags.length; t++) {\n",
|
||
|
" var r = anchors[i].getElementsByTagName(tags[t]);\n",
|
||
|
" if (r.length > 0) {\n",
|
||
|
"child = r[0];\n",
|
||
|
"break;\n",
|
||
|
" }\n",
|
||
|
" }\n",
|
||
|
" if (child == null){\n",
|
||
|
" text_memo += \"null\\n\";\n",
|
||
|
" continue;\n",
|
||
|
" }\n",
|
||
|
" if (anchors[i].hasAttribute(\"id\")) {\n",
|
||
|
" // when converted in RST\n",
|
||
|
" href = anchors[i].id;\n",
|
||
|
" text_memo += \"#1-\" + href;\n",
|
||
|
" // passer à child suivant (le chercher)\n",
|
||
|
" }\n",
|
||
|
" else if (child.hasAttribute(\"id\")) {\n",
|
||
|
" // in a notebook\n",
|
||
|
" href = child.id;\n",
|
||
|
" text_memo += \"#2-\" + href;\n",
|
||
|
" }\n",
|
||
|
" else {\n",
|
||
|
" text_memo += \"#3-\" + \"*\" + \"\\n\";\n",
|
||
|
" continue;\n",
|
||
|
" }\n",
|
||
|
" var title = child.textContent;\n",
|
||
|
" var level = parseInt(child.tagName.substring(1,2));\n",
|
||
|
"\n",
|
||
|
" text_memo += \"--\" + level + \"?\" + lfirst + \"--\" + title + \"\\n\";\n",
|
||
|
"\n",
|
||
|
" if ((level < lfirst) || (level > llast)) {\n",
|
||
|
" continue ;\n",
|
||
|
" }\n",
|
||
|
" if (title.endsWith('¶')) {\n",
|
||
|
" title = title.substring(0,title.length-1).replace(\"<\", \"<\").replace(\">\", \">\").replace(\"&\", \"&\")\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" if (title.length == 0) {\n",
|
||
|
" continue;\n",
|
||
|
" }\n",
|
||
|
"\n",
|
||
|
" while (level < memo_level) {\n",
|
||
|
" text_menu += \"</ul>\\n\";\n",
|
||
|
" memo_level -= 1;\n",
|
||
|
" }\n",
|
||
|
" if (level == lfirst) {\n",
|
||
|
" main_item += 1;\n",
|
||
|
" }\n",
|
||
|
" if (keep_item != -1 && main_item != keep_item + 1) {\n",
|
||
|
" // alert(main_item + \" - \" + level + \" - \" + keep_item);\n",
|
||
|
" continue;\n",
|
||
|
" }\n",
|
||
|
" while (level > memo_level) {\n",
|
||
|
" text_menu += \"<ul>\\n\";\n",
|
||
|
" memo_level += 1;\n",
|
||
|
" }\n",
|
||
|
" text_menu += repeat_indent_string(level-2) + sformat.replace(\"__HREF__\", href).replace(\"__TITLE__\", title);\n",
|
||
|
" }\n",
|
||
|
" while (1 < memo_level) {\n",
|
||
|
" text_menu += \"</ul>\\n\";\n",
|
||
|
" memo_level -= 1;\n",
|
||
|
" }\n",
|
||
|
" text_menu += send;\n",
|
||
|
" //text_menu += \"\\n\" + text_memo;\n",
|
||
|
" return text_menu;\n",
|
||
|
"};\n",
|
||
|
"var update_menu = function() {\n",
|
||
|
" var sbegin = \"\";\n",
|
||
|
" var sformat = '<li><a href=\"#__HREF__\">__TITLE__</a></li>';\n",
|
||
|
" var send = \"\";\n",
|
||
|
" var keep_item = -1;\n",
|
||
|
" var text_menu = update_menu_string(sbegin, 2, 4, sformat, send, keep_item);\n",
|
||
|
" var menu = document.getElementById(\"my_id_menu_nb\");\n",
|
||
|
" menu.innerHTML=text_menu;\n",
|
||
|
"};\n",
|
||
|
"window.setTimeout(update_menu,2000);\n",
|
||
|
" </script>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
"<IPython.core.display.HTML object>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 2,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"from jyquickhelper import add_notebook_menu\n",
|
||
|
"add_notebook_menu()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"ws = get_class_ws(\"503\")\n",
|
||
|
"flat = extract_flat_marks(ws)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:485: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Mark\"] = compute_marks(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:486: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Level\"] = compute_level(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:487: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Latex_rep\"] = compute_latex_rep(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:488: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Normalized\"] = compute_normalized(df)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"quest_pov, exo_pov, eval_pov = digest_flat_df(flat)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 4,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 0,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array(['DS1', 'DS2', 'DS3', 'DS4', 'DS5', 'DS6', 'Calcul mental T2', 'DM1',\n",
|
||
|
" 'DS7', 'DS8', 'DS9', 'DS10', 'Calcul mental T1', 'CMT3'], dtype=object)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 5,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"flat[\"Nom\"].unique()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"collapsed": true,
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 8,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 0,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"## DS1"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"metadata": {
|
||
|
"collapsed": true,
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"ds1_flat = flat[flat[\"Nom\"]==\"DS1\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:485: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Mark\"] = compute_marks(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:486: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Level\"] = compute_level(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:487: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Latex_rep\"] = compute_latex_rep(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:488: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Normalized\"] = compute_normalized(df)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds1_quest, ds1_exo, ds1_eval = digest_flat_df(ds1_flat)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 8,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>index</th>\n",
|
||
|
" <th>Eleve</th>\n",
|
||
|
" <th>Nom</th>\n",
|
||
|
" <th>Trimestre</th>\n",
|
||
|
" <th>Bareme</th>\n",
|
||
|
" <th>Date</th>\n",
|
||
|
" <th>Mark</th>\n",
|
||
|
" <th>Normalized</th>\n",
|
||
|
" <th>Mark_barem</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>0</td>\n",
|
||
|
" <td>ABDILLAH Nourouzamane</td>\n",
|
||
|
" <td>DS1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>22.0</td>\n",
|
||
|
" <td>2016-10-01</td>\n",
|
||
|
" <td>12.0</td>\n",
|
||
|
" <td>0.55</td>\n",
|
||
|
" <td>12 / 22</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>ABDOU Mouhamadi</td>\n",
|
||
|
" <td>DS1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>22.0</td>\n",
|
||
|
" <td>2016-10-01</td>\n",
|
||
|
" <td>12.0</td>\n",
|
||
|
" <td>0.55</td>\n",
|
||
|
" <td>12 / 22</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>ABOUDOU Amayoune</td>\n",
|
||
|
" <td>DS1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>22.0</td>\n",
|
||
|
" <td>2016-10-01</td>\n",
|
||
|
" <td>15.5</td>\n",
|
||
|
" <td>0.70</td>\n",
|
||
|
" <td>15,5 / 22</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>AHAMED Tansia</td>\n",
|
||
|
" <td>DS1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>22.0</td>\n",
|
||
|
" <td>2016-10-01</td>\n",
|
||
|
" <td>10.5</td>\n",
|
||
|
" <td>0.48</td>\n",
|
||
|
" <td>10,5 / 22</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>4</td>\n",
|
||
|
" <td>AHMED Yancoub</td>\n",
|
||
|
" <td>DS1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>22.0</td>\n",
|
||
|
" <td>2016-10-01</td>\n",
|
||
|
" <td>10.5</td>\n",
|
||
|
" <td>0.48</td>\n",
|
||
|
" <td>10,5 / 22</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" index Eleve Nom Trimestre Bareme Date Mark \\\n",
|
||
|
"0 0 ABDILLAH Nourouzamane DS1 1 22.0 2016-10-01 12.0 \n",
|
||
|
"1 1 ABDOU Mouhamadi DS1 1 22.0 2016-10-01 12.0 \n",
|
||
|
"2 2 ABOUDOU Amayoune DS1 1 22.0 2016-10-01 15.5 \n",
|
||
|
"3 3 AHAMED Tansia DS1 1 22.0 2016-10-01 10.5 \n",
|
||
|
"4 4 AHMED Yancoub DS1 1 22.0 2016-10-01 10.5 \n",
|
||
|
"\n",
|
||
|
" Normalized Mark_barem \n",
|
||
|
"0 0.55 12 / 22 \n",
|
||
|
"1 0.55 12 / 22 \n",
|
||
|
"2 0.70 15,5 / 22 \n",
|
||
|
"3 0.48 10,5 / 22 \n",
|
||
|
"4 0.48 10,5 / 22 "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 8,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds1_eval.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 9,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 0,
|
||
|
"height": 11,
|
||
|
"hidden": false,
|
||
|
"row": 4,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"<matplotlib.axes._subplots.AxesSubplot at 0x7f982ee600f0>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 9,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/.virtualenvs/enseignement/lib/python3.6/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans\n",
|
||
|
" (prop.get_family(), self.defaultFamily[fontext]))\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAFbCAYAAADm7uYgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH1lJREFUeJzt3Xt0zHf+x/HXJJJGJDSJuEyCNkEUDZLRhLJF1KboVjUo\nlbK0arPWplrrst2i2ytSilhV6rZqaav2tD09vS62a5VsaOuyiEu1UrdMKKlbkvn94ZhfZ4MZNclH\nZp6Pc5yT+X4/38/3PZ/5mtd8L/Mdi8PhcAgAABgTYLoAAAD8HWEMAIBhhDEAAIYRxgAAGEYYAwBg\nGGEMAIBhhDF8Trdu3TR37lzTZQCAxyx8zxjVwfjx43X48GEtXry4wryEhARNnTpV9913nyTJbrcr\nJCREoaGhbvvNy8vTQw89pE8//VSxsbHeLhsGrF69WhMmTJAkWSwW1apVS7GxsUpNTdXDDz+smJgY\nl/Zvv/22li9frgMHDsjhcKhBgwZKTk7Ws88+K0k6d+6cJk+erJ07d6qgoEANGzbUxx9/XOXPC76t\nhukCAG+LjIw0XcIVnT9/XsHBwabL8AlXG8vAwECtW7dOklRSUqKdO3dqyZIl6t27t1577TXZbDZJ\nF4N78uTJGjdunO68805J0t69e/Xpp586+yorK1NQUJD69++vrVu3asuWLZX8zOCPOEwNn/O/h6k/\n+eQT9enTR23atJHNZlNGRoZ27Nih7777Tg899JAkKS0tTQkJCcrMzJQkORwOLVy4UGlpaWrdurW6\nd+9eYa+8uLhYo0ePVtu2bdWxY0fNnDlT48aN09ChQ51tMjMzNXHiRM2cOVOdOnVS165dJUnvvvuu\n+vXrp+TkZKWkpGjEiBHav3+/c7nvvvtOCQkJevfddzV8+HC1adNG6enp2rRpk44cOaJHH31Ubdu2\nVc+ePZWXl+dc7osvvlBCQoLWrVunAQMGKDExUX379tWePXu0Z88eDRw4UG3atFFGRoYKCgpcns+2\nbds0bNgwtWvXTqmpqRo1apQOHTrkdqxnzJihP/7xj0pKSlJKSopefvlllZeXO9ucPn1aTz/9tFJT\nU9W6dWv17dtXn3/+eYXn+tPnIUl33323Zs+e7XyckJCgpUuX6oknnlBycrL+8Ic/XLW26OhoRUdH\n65ZbbtE999yjv/71r0pISNCECRNUVlYm6eK20bVrVw0ePFi33nqrbr31VnXv3l0vvPCCs5/Q0FA9\n88wzGjRokBo1anTVdQI/F2EMn3bs2DFlZ2erV69eeu+997Ry5UoNGTJEgYGBatiwoTO033zzTX3+\n+efON/833nhDr7zyikaMGKH33ntPw4cPV05Ojt58801n3xMmTNCuXbs0b948LVmyREeOHNEnn3xS\noYYPPvhAdrtdixcv1uuvvy7p4l7db37zG73zzjtatGiRAgIC9Nhjj+n8+fMuy77yyisaOHCg1qxZ\no/j4eI0ZM0bjxo1T//799c4776hp06Z64okndOHCBZflZsyYoezsbK1evVpBQUEaM2aMJk+erNGj\nRzunXTqUK0kFBQXKzMxU27Zt9dZbb2nJkiUKCAjQsGHDdO7cuauO8bJly1SvXj299dZbmjBhgpYu\nXaply5Y550+cOFGff/65pk2bpr///e9KSkrSyJEjtXfvXk9eQhe5ublq166d3nnnHWVnZ1/TsjVq\n1NCvf/1rHTx4UDt27JB0MbC3bdvm8kEIMIHD1Kg2Nm3apHbt2l3TMseOHdOFCxd0zz33OM8Jx8fH\nO+fXqVNH0sVD29HR0c7p8+fP1+DBgzVgwABJ0i233KL9+/dr3rx56tevnw4cOKB//OMfWrx4sVJT\nUyVJzzzzjDZs2FChhnr16mny5MkKCPj/z74PPPCAS5sXX3xRKSkp+vrrr5WcnOycPnjwYHXv3l2S\n9Nhjj6lfv34aNmyY7r77bknSyJEjdf/992v//v1q3ry5c7lRo0apQ4cOkqShQ4cqOztbs2bNck4b\nNmyYRo0apZKSEtWqVUsLFixQly5dNHr0aGcf06dPV/v27fXPf/7TWcPltGjRQr///e8lSXFxcdq3\nb59ef/11DRkyRN98840+/PBDzZ8/X507d5YkPfXUU/rPf/6jBQsWuOyBeiItLU2DBw++pmV+qmnT\nppKkb7/9VrfffrtGjRql3bt3Kz09XTExMUpMTFSHDh107733enTNAeAthDGqjcTERL300ksVpvfo\n0eOKyyQkJKhTp06699571bFjR91xxx3q0aOHGjZseMVlTp8+rcOHD6t9+/Yu0++44w4tXbpUZ86c\ncR7ibdOmjXN+UFCQWrdurZKSEpflWrVq5RLEkrRz507NmTNHO3fuVHFxsXN6YWGhSxi3aNHC+fel\nDwsJCQnOaXXr1pUkFRUVVXjenixnt9tVq1Ytff311/rmm28qfNg5d+6cDhw4oKtp27aty+OkpCS9\n+uqrOn36tHOcLp2jvcRms2nr1q1X7fdyEhMTr3mZy7FYLJIujs2KFSu0d+9ebd68WV9++aWmTZum\nV199VW+++aaioqK8sj7AHcIY1UZISIiaNGlyTcsEBgZqwYIF+vrrr7VhwwZ99NFHysnJ0SuvvOI8\nf3s9Lr2pX03NmjVdHp85c0bDhg1TcnKyXnjhBWcw9urVq8Lh5ho1/v+/6KV1XW7a/34pIigoqEId\nl1vu0rnd8vJy3XfffRoxYkSF5W6++WY3z/D6/O8HlUtKS0srTPvfsbxWe/bskaQK537j4+MVHx+v\nBx98UFlZWUpPT9eKFSs0atSo61of4CnOGcPnWSwWJSYmauTIkVq+fLnat2+v1atXS5LzatyfXnAU\nFhamBg0aaPPmzS79bNq0SbGxsapZs6bzcOdP9+5KS0u1fft2t/Xs3btXdrtdjz/+uFJSUhQfH6+T\nJ09WCNSq1Lp1a+3atUuNGzdWkyZNXP5dOpR/JV9++aXL4y1btqh+/foKCwtTs2bNJKnCxVl5eXnO\neZeufj969KhzflFRkY4cOXLdz+unSktLtXjxYjVp0kQtW7a8YrvY2FiFhIRUONoAVCb2jOHT8vPz\n9e9//1udOnVSdHS0vvnmG+3atUsZGRmSJKvVqoCAAK1bt049e/ZUcHCwwsPDNWLECL300ku65ZZb\ndMcdd2jjxo1asWKFnn76aUkXzyF37dpVU6ZM0TPPPKPIyEi9/vrrOn36tNu9ZavVquDgYC1btkzD\nhg3ToUOHNH36dI/2sivLyJEjlZGRoSeffFJDhgxRRESEDh06pE8++URDhgy56lXEO3fu1OzZs9W7\nd29t27ZNS5cudZ5Dbty4sdLT0zVlyhRNmTJFVqtVK1as0J49ezR9+nRJF494JCUlacGCBYqLi1Np\naalmzJhx3V8BO3bsmCTXrzbt2rVLr732mnNvfNKkSYqOjlZqaqoaNmyo4uJiLV26VKdPn3Y5T15Q\nUKALFy44r0HYuXOnpIt71HxVDd5AGMOnhYeHa+vWrXrjjTd08uRJRUdH695771VWVpaki+dOx4wZ\no/nz5+v555+XzWbTsmXLNGjQIJ05c0bz5s3TlClT1KBBAz3xxBPq16+fs+8XXnhBkyZN0qOPPqrQ\n0FA9+OCD6tixY4Urov9XZGSkpk2bppdffllvv/224uPjNXHiRJevRFW1+Ph4/e1vf9PMmTM1fPhw\nnTt3TvXr11dqaqrCw8OvumxmZqYKCwv1wAMPKCgoSA899JAefvhh5/znnntOU6dO1dixY3X69Gk1\nb95c8+bNc7mQ7vnnn9ef/vQnPfjgg6pXr56efPJJHTx48Gc/n7KyMnXq1EkWi0WhoaGKjY1Vhw4d\nlJOT43LTjzvvvFOrV6/WqlWrZLfbVbt2bSUkJGj+/PnO7x1L0ogRI1y+5tWnTx9J4mYx8BruwAV4\nSVlZme655x5169ZN48ePN11OlejWrZsyMjKcH24A/DzsGQM/0+bNm1VUVKSWLVuqpKREixcv1qFD\nh3T//febLg1ANUMYAz9
|
||
|
"text/plain": [
|
||
|
"<matplotlib.figure.Figure at 0x7f982f105fd0>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"marks_hist(ds1_eval)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 4,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 4,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"Répartition des notes sur chaques exercices"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 8,
|
||
|
"height": 11,
|
||
|
"hidden": false,
|
||
|
"row": 4,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"<matplotlib.axes._subplots.AxesSubplot at 0x7f982cca3f60>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 10,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/.virtualenvs/enseignement/lib/python3.6/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans\n",
|
||
|
" (prop.get_family(), self.defaultFamily[fontext]))\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAFKCAYAAAANP2bLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHjpJREFUeJzt3XtwVPXB//HPZrMgIYRAEtBFAxJDaxBBGwXbAbn1KQ9S\nRKoppVqVMpWLSlqFKCpecATUoAUSQLB46TMULYLjrT4dUUEZxwhlDFBFJGokpJiES0KA3eye5w9+\n5kcEsifh7J58k/drJjPsZvf7/eS7Sz45Z3fP8ViWZQkAABgnzu0AAACgeShxAAAMRYkDAGAoShwA\nAENR4gAAGIoSBwDAUJQ4AACGinc7QHOUlZU5Npbf73d0PJwe6xw7rHVssM6xwTqfWIMzYUscAABD\nUeIAABiKEgcAwFCUOAAAhqLEAQAwFCUOAIChKHEAAAxl5OfEAQCIZMSIEbrwwgvrLw8fPlwTJ06M\nylwVFRVavHixHn744aiMfyaUOACgVWrXrp1Wrlzp6JihUEher/eU61NTU2Ne4BIlDgBoQ2pqajRt\n2jQ9+uijSk9P19y5c3XZZZdpzJgxKioq0nPPPadgMCi/36+8vDx16NBBEyZM0LBhw7RlyxZNmDBB\nP/rRj7Rw4UIdPHhQXq9XDz74oLxer+69916tWrVKoVBIzzzzjD7++GPFxcXpmmuu0fjx4/X555+r\nsLBQR48eVefOnXXPPfcoJSXlrH4eShwA0CoFAgFNnjy5/vLEiRM1fPhw3XnnnVqwYIF+9atfqbq6\nWmPGjNGhQ4f017/+VU8++aQ6dOig1atX66WXXtLNN98sSUpKStIzzzwjSZo6daomTpyowYMHKxAI\nKBwO6+DBg/XzvP766yovL9fKlSvl9Xp1+PBh1dXVafHixXr00UeVnJysDRs2aOXKlcrLyzurn5ES\nBwC0SmfanZ6dna333ntPf/7zn+u/v3PnTn311Ve64447JEl1dXXKysqqv8+wYcMkSbW1taqoqNDg\nwYPr5/ihLVu2aOzYsfW73ZOSklRSUqKSkhLdfffdkqRwOHzWW+ESJQ6gFQk9+qeYzVXu8ykUDDbp\nPt77F0YpDZoiHA7rm2++Ufv27VVdXa20tDRZlqXs7Gw98MADp71Phw4dzmpOy7LUq1cvFRQUnNU4\nP8RHzAAAbcrf//53paen6/7779eCBQvqt7q3b9+uvXv3SpKOHj2q0tLSU+6bkJCgtLQ0ffDBB5JO\n7LI/duxYg9tkZ2frtddeUygUkiQdPnxYF1xwgQ4ePKgdO3ZIOrGlX1JSctY/C1viAIBW6YeviV95\n5ZUaNWqU3njjDS1dulQJCQm69NJL9eKLL+rWW29VXl6e5s6dq+D/28MyadIkXXDBBaeMO3v2bC1c\nuFCrVq2S1+vVQw89pLi4/79NfM0116i0tFS///3v5fV6NWbMGF133XV6+OGHtXjxYtXU1CgUCun6\n669v8BG45vBYlmWd1Qgu4Hzi5mGdY6ctr3Usd6f7fL76X/Z2sTu96dry8/l7nE8cAIBWiBIHAMBQ\nlDgAAIaixAEAMBQlDgCAoShxAAAMxefEAQCIggULFuijjz5ScnKyVq1aFZU5KHEAQKvn9DEE7Hzm\nf9SoUbruuus0b948R+c+GbvTAQCIgv79+yspKSmqc1DiAAAYihIHAMBQMSnxwsJCTZ48WXfdddcp\n33vttdeUk5Ojw4cPxyIKAACtRkxKfOjQoZo9e/Yp11dUVOjTTz9VampqLGIAANCqxKTEs7KylJiY\neMr1zz//vH7729/K4/HEIgYAADEzd+5cTZ8+XaWlpbrhhhv0xhtvOD6Hax8xKyoqUteuXdWrVy+3\nIgAA2gg3TgP7wAMPRH0OV0r8+PHjWrdune6///5m3b+xc6u2hPFweqxz7LTVtS73+WI6n6+J853b\nRh+Xs9VWn892uFLi//nPf7R//37NnDlTklRZWam8vDzNmzdPycnJEe/v5AniOeF8bLDOsdOW1zoU\nDMZsLp/Pp2AT52urj8vZaMvP5+819keMKyWenp6ulStX1l+ePn265s2bF/UPxQMA0JrEpMSffvpp\n7dy5U9XV1ZoyZYpycnI0fPjwWEwNAECrFZMSz83NbfT7BQUFsYgBAECrwhHbAAAwFGcxAwAgCvbv\n36958+bpwIEDkqQxY8bo+uuvd3QOShwA0Or96a2vHB1v4X/3ingbr9erqVOnqk+fPqqtrdVtt92m\n7OxsR4+Pwu50AACiICUlRX369JEkJSQkKD09XRUVFY7OQYkDABBl5eXl2r17ty6++GJHx6XEAQCI\noqNHj2rOnDmaPn26Onbs6OjYlDgAAFFSV1enOXPmaOTIkRoyZIjj41PiAABEgWVZevzxx9WzZ0/l\n5OREZQ7enQ4AQBRs375d//znP9W7d29NnjxZkjR58mQNGjTIsTkocQBAq2fnI2FO69evn959992o\nzsHudAAADEWJAwBgKEocAABDUeIAABiKEgcAwFCUOAAAhuIjZgAAREEgENCMGTMUCAQUCoV09dVX\n69Zbb3V0DkocANDqbfzfakfHG/JfnSLexufzaeHCherQoYPq6up0xx13aODAgcrKynIsB7vTAQCI\nAo/How4dOkg6cQz1UCjk+BxsiQMAECWhUEi33Xab9u7dq3Hjxjm6FS6xJQ4AQNR4vV6tXLlSL7/8\nsj777DOVlJQ4Oj4lDgBAlCUmJmrAgAH6+OOPHR2XEgcAIAoOHjyompoaSdLx48e1ZcsWpaenOzoH\nr4kDABAFlZWVmj9/vsLhsMLhsIYOHaqrrrrK0TkocQBAq2fnI2FOy8jI0IoVK6I6B7vTAQAwFCUO\nAIChKHEAAAxFiQMAYKiYvLGtsLBQW7duVefOnZWfny9JevHFF7VlyxbFx8ere/fumjZtmjp27BiL\nOAAAtAox2RIfOnSoZs+e3eC6Sy+9VPn5+XryySd13nnnad26dbGIAgBAqxGTEs/KylJiYmKD6/r3\n7y+v1ytJ6tOnj6qqqmIRBQCAVqNFvCa+YcMGDRgwwO0YAAAYxfWDvbzyyivyer0aPHiw7fv4/X5H\nMzg9Hk6PdY6dtrrW5T5fTOfzNXG+c9vo43K22urz2Q5XS/y9997Tli1bNGfOHHk8Htv3KysrcyyD\n3+93dDycHuscO215rUPBYMzm8vl8CjZxvrb6uJyNtvx8/l5jf8S4tjt927ZtevXVV5WXl6f27du7\nFQMAAGPFZEv86aef1s6dO1VdXa0pU6YoJydH69atU11dnebOnStJyszM1B/+8IdYxAEAoFWISYnn\n5uaect3w4cNjMTUAAK1Wi3h3OgAAaDpKHAAAQ1HiAAAYihIHAMBQlDgAAIaixAEAMBQlDgCAoShx\nAAAMRYkDAGAoShwAAENR4gAAGIoSBwDAUJQ4AACGosQBADBUTE5FCiCyjf9b7cg4Pt8eBYNBR8Y6\n2ZD/6uT4mADODlviAAAYihIHAMBQlDgAAIaixAEAMBQlDgCAoShxAAAMRYkDAGAoShwAAENR4gAA\nGIoSBwDAUJQ4AACGosQBADAUJQ4AgKEocQAADBWTU5EWFhZq69at6ty5s/Lz8yVJNTU1euqpp/Td\nd98pLS1Nf/zjH5WYmBiLOAAAtAox2RIfOnSoZs+e3eC69evXq1+/flq0aJH69eun9evXxyIKAACt\nRkxKPCsr65St7KKiIl199dWSpKuvvlpFRUWxiAIAQKvh2mvihw4dUpcuXSRJycnJOnTokFtRAAAw\nUkxeE4/E4/HI4/HYvr3f73d0fqfHw+mxzo3z+fY4OJbPsbG+Z8Lj95se492O0KjVBqxhS2TCc88t\nrpV4586ddeDAAXXp0kUHDhxQUlKS7fuWlZU5lsPv9zs6Hk6PdY4sGAw6Mo7P53NsrJOZ8PhZlhWz\nuTweT5PnM2ENWxp+dzT+R4xru9Ozs7P1/vvvS5Lef/99XXHFFW5FAQDASDHZEn/66ae1c+dOVVdX\na8qUKcrJydG4ceP01FN
|
||
|
"text/plain": [
|
||
|
"<matplotlib.figure.Figure at 0x7f982ccdddd8>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds1_exo.pivot(\"Eleve\", \"Exercice\", \"Normalized\").plot.hist(alpha=0.8)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 4,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 8,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"Diagramme moustache par exercice"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 11,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 4,
|
||
|
"height": 11,
|
||
|
"hidden": false,
|
||
|
"row": 12,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"<matplotlib.axes._subplots.AxesSubplot at 0x7f982ca855c0>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 11,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/.virtualenvs/enseignement/lib/python3.6/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans\n",
|
||
|
" (prop.get_family(), self.defaultFamily[fontext]))\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAFKCAYAAAAuZDceAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEdJJREFUeJzt3X9o3Hf9wPFXmgxrm7bf3c21XluV3bqCHTjioV3BL0sq\nDvxR+4frcOg2Kv3Dwez8w82Vba1o59DVKltlUkJBphBEHENRhAUZNAwqEsc2rO06tCWR0GRz7brO\nJpfvH/t+wzfM9a7tfXw1l8fjr13zzvte3H2yZ+5zl7uO6enp6QAA0izIHgAA5jsxBoBkYgwAycQY\nAJKJMQAkE2MASCbGAJCsK/PKR0ZGMq9+TqhUKm4nWsoxRas5pppTqVTe9WseGQNAMjEGgGRiDADJ\nxBgAkokxACQTYwBIJsYAkEyMASCZGANAMjEGgGRiDADJxBgAkokxACQTYwBIJsYAkEyMASCZGANA\nMjEGgGRiDADJxBgAkokxACQTYwBIJsYAkEyMASCZGANAMjEGgGRiDADJxBgAkokxACQTYwBIJsYA\nkEyMASCZGANAMjEGgGRiDADJxBgAkokxACQTYwBI1tXMouHh4Thw4EDU6/XYuHFjbN68edbXT548\nGfv27Ys33ngj6vV63HbbbdHT01PIwADQbhrGuF6vR39/fzzwwANRLpfj/vvvj1qtFqtWrZpZ88tf\n/jJuvPHG+NSnPhUnTpyI7373u2IMAE1qeJr66NGjsWLFili+fHl0dXXFhg0b4tChQ7PWdHR0xJkz\nZyIi4syZM3HllVcWMy0AtKGGj4wnJiaiXC7PXC6Xy3HkyJFZa2655Zb4zne+E7/73e/irbfeigcf\nfLD1kwJAm2rqOeNGDh48GDfddFN87nOfi7/+9a/x2GOPxZ49e2LBgvM/8K5UKq24+jnn+uuvjxdf\nfLGQvdetWxcvvPBCIXvTPubrzx7FcUxdmoYxLpVKMT4+PnN5fHw8SqXSrDWDg4OxY8eOiIi47rrr\n4ty5c3Hq1KlYtmzZefceGRm5mJnnvN///vdNr53atik69z99QfvP19uV5lQqFccILeWYas75fmFp\n+JxxtVqN0dHRGBsbi8nJyRgaGoparTZrzVVXXTXzaOzEiRNx7ty5WLp06SWODQDzQ8NHxp2dnbF1\n69bYvXt31Ov16O3tjdWrV8fAwEBUq9Wo1Wpx++23x09+8pP4zW9+ExERd911V3R0dBQ+PAC0g47p\n6enprCt3WqOxizlNDefjlCKt5phqziWdpgYAitWSV1MDufr6+uLw4cMt33ft2rUxODjY8n2B2cQY\n2sCFBNNTH3D5cZoaAJKJMQAkE2MASCbGAJBMjAEgmRgDQDIxBoBkYgwAycQYAJKJMQAkE2MASCbG\nAJBMjAEgmRgDQDIxBoBkYgwAycQYAJKJMQAkE2MASCbGAJBMjAEgmRgDQLKu7AHaxdT22yLOnC5m\n722bCtk3FnVH549+XszeADRNjFvlzOno3P90y7etVCoxMjLS8n0jCow8ABfEaWoASCbGAJDMaWoA\n3qGvry8OHz7c8n3Xrl0bg4ODLd93rhNjAN7hQoI5tW1TIa+ZmU+cpgaAZGIMAMnEGACSiTEAJBNj\nAEgmxgCQTIwBIJkYA0AyMQaAZGIMAMnEGACSiTEAJBNjAEgmxgCQTIwBIJkYA0AyMQaAZGIMAMnE\nGACSiTEAJOtqZtHw8HAcOHAg6vV6bNy4MTZv3vyONUNDQ/GLX/wiOjo64oMf/GBs37695cMCQDtq\nGON6vR79/f3xwAMPRLlcjvvvvz9qtVqsWrVqZs3o6Gg89dRT8e1vfzu6u7vjn//8Z6FDw3wwtf22\niDOni9l726ZC9o1F3dH5o58Xsze0sYYxPnr0aKxYsSKWL18eEREbNmyIQ4cOzYrxM888EzfffHN0\nd3dHRMSyZcsKGhfmkTOno3P/0y3ftlKpxMjISMv3jSgw8tDmGsZ4YmIiyuXyzOVyuRxHjhyZteb/\nfrAffPDBqNfrccstt8QNN9zQ4lEBoD019ZxxI/V6PUZHR2Pnzp0xMTERO3fujEcffTQWL1583u+r\nVCqtuPrLws/WPxynB14rYOci9nzbkg2PxG1tdB+0m+NR3M9IUfsWOTOXL/f7pWsY41KpFOPj4zOX\nx8fHo1QqvWPNmjVroqurK66++up4//vfH6Ojo3Httdeed++iTpVl6P3K9YXsO7VtUyGnKt/2X211\nH7SjIu6fIk9TR7TXzzXNc783dr5fWBr+aVO1Wo3R0dEYGxuLycnJGBoailqtNmvNxz72sXjxxRcj\nIuL111+P0dHRmeeYAYDza/jIuLOzM7Zu3Rq7d++Oer0evb29sXr16hgYGIhqtRq1Wi0+8pGPxJ//\n/Of4+te/HgsWLIgvfelLsWTJkv/E/AAw5zX1nHFPT0/09PTM+rdbb7115r87OjrijjvuiDvuuKO1\n0wHAPOAduAAgmRgDQDIxBoBkYgwAycQYAJKJMQAkE2MASCbGAJCsJR8UAbTes3Pww0e61z8cvYXt\nDu1LjOEy9d/P7ZiDn2d8e8RXivpgE2hfTlMDQDIxBoBkYgwAycQYAJKJMQAkE2MASCbGAJBMjAEg\nmRgDQDIxBoBkYgwAycQYAJKJMQAkE2MASCbGAJDM5xkn6Ovri8OHDzf/DStXNr107dq1MTg4eBFT\nAe1uavttEWdOF7P3tk2t33RRd3T+6Oet3/cyJMYJLiSWRX4QPDDPnDkdnfufbvm2Rf1/qpDAX6ac\npgaAZGIMAMnEGACSiTEAJBNjAEgmxgCQTIwBIJkYA0AyMQaAZGIMAMnEGACSiTEAJBNjAEgmxgCQ\nTIwBIJnPM4bLWBGf53q85Tv+P4u6i9wd2pYYw2WqiA+Bj3g78EXtDVwcp6kBIJkYA0AyMQaAZGIM\nAMnEGACSiTEAJBNjAEgmxgCQrKkYDw8Px/bt2+Puu++Op5566l3XPffcc7Fly5Z4+eWXWzYgALS7\nhjGu1+vR398fO3bsiL1798bBgwfjxIkT71j35ptvxm9/+9tYs2ZNIYMCQLtqGOOjR4/GihUrYvny\n5dHV1RUbNmyIQ4cOvWPdwMBAfP7zn48rrriikEEBoF01fG/qiYmJKJfLM5fL5XIcOXJk1ppjx47F\nyZMno6enJ55+uvn3vK1UKhcw6vzldqKVjodjar4q8r4vYt/5dKxe8gdF1Ov1+OlPfxp33XXXBX/v\nyMjIpV5926tUKm4nWs4xNX8Vcd8X+f+pdjpWz/eLRcMYl0qlGB8fn7k8Pj4epVJp5vLZs2fj+PHj\n8a1vfSsiIl577bX43ve+F/fee29Uq9VLmRsA5oWGMa5WqzE6OhpjY2NRKpViaGgovva1r818fdGi\nRdHf3z9zedeuXfHlL39ZiAGgSQ1j3NnZGVu3bo3du3dHvV6P3t7eWL16dQwMDES1Wo1arfafmBMA\n2lZTzxn39PRET0/PrH+79dZb/+3aXbt2XfJQADCfeAcuAEgmxgCQ7JL/tAmAueHZ9Q/H6YHXCti5\niD0jutc/HL2F7Hz5EWOAeeK/n9sRnfubf2OmZhX1d8ZT226P+Err570cOU0NAMnEGACSiTEAJBNj\nAEgmxgCQTIwBIJkYA0AyMQaAZGIMAMnEGACSiTEAJPPe1NAG+vr64vDhw81/w8qVTS1bu3ZtDA4O\nXuRUQLPEGNrAhQSzqDf1By6e09QAkEyMASCZGANAMjEGgGRewAUwj0xt29TyPY+3fMf/tai7qJ0v\nO2IMME907n+6kH2ntm0qbO/5wmlqAEgmxgCQTIwBIJkYA0AyMQaAZGIMAMnEGACSiTEAJBNjAEgm\nxgCQTIwBIJkYA0AyMQaAZGIMAMnEGACSiTEAJBNjAEgmxgCQTIwBIJkYA0AyMQaAZGIMAMnEGACS\niTEAJBNjAEgmxgCQTIwBIJkYA0CyrmYWDQ8Px4EDB6Jer8fGjRtj8+bNs77+61//Op555pno7OyM\npUuXxle/+tV43/veV8j
|
||
|
"text/plain": [
|
||
|
"<matplotlib.figure.Figure at 0x7f982ca910f0>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds1_exo.pivot(\"Eleve\", \"Exercice\", \"Normalized\").plot.box()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 0,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 15,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"Axes paralleles"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 12,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 8,
|
||
|
"height": 9,
|
||
|
"hidden": false,
|
||
|
"row": 15,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"<matplotlib.axes._subplots.AxesSubplot at 0x7f982c93fd68>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 12,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/.virtualenvs/enseignement/lib/python3.6/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans\n",
|
||
|
" (prop.get_family(), self.defaultFamily[fontext]))\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAFACAYAAABtFXLwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXd0HOl55vtUVWd0Rs6BIBiHmZxhmCEBEhyOcnKQVtZ6\nresrWZY0kiyvLNk+3nuPPZK9GunK1tiSo7SWbcm2JHskazgACTDnOIwgQOTAAHQAOneF+8dXVV3d\nXYhsJM73O4cHaDTQ3XjRrHrqDc/LSJIkgUKhUCgUCoUy77CL/QIoFAqFQqFQ3i5Q4UWhUCgUCoWy\nQFDhRaFQKBQKhbJAUOFFoVAoFAqFskBQ4UWhUCgUCoWyQFDhRaFQKBQKhbJAUOFFoVAoFAqFskAY\nFvPJh4eHF/PplyRlZWU0LjrQuGRDY6IPjYs+NC760LhkQ2OiT1lZWU4eh2a8KBQKhUKhUBYIKrwo\nFAqFQqFQFggqvCgUCoVCoVAWCCq8KBQKhUKhUBYIKrwoFAqFQqFQFggqvCgUCoVCoVAWCCq8KBQK\nhUKhUBYIKrwoFAqFQqFQFggqvCgUCoVCoVAWCCq8KBQKhUKhUBaIRRVef/jFOK6enYAQHQcjhMGI\ncUDiAUlazJdFoVAoFAqFMi8s6q7Ga5eBa5dNsFhEPLsjhh3PhrB1Gw+XE5AYDmA4SIxB/sgBjIF8\nBAcwzGK+dAqFQqFQKJRZs6jCi7Pn4/oNK0wGHh19PH74Ux4WUxLbNgfxwk4/du7wo6qKB1gDwBgh\nsUaAYQGwVJhRKBQKhUJZdiyq8Pr5v3Xg8rU8vPL1Cpw66wQAeD1J/Psbhfi3XzAAJNTXhnBo/xgO\nPP8Y2zf7YTIJgAQwkCCB0YguEyTWMIUwSxdoFAqFQqFQKAvNoiuQrZvC+PEPOnDitAN/8vUKXHvL\nDo6TsGPrOOx5Is5dtOPbf1uDb/9tDfLyBOzbE8TBpgD27wuiMD8JQATEJBgxAVaKApJGmDEMAEV0\nGXWEmSHjY0qgUSgUCoVCoeSaRRdeCi/snsDzu+7gjRY3vvbNCpy94ITJJOJjH36MnTvGceGyAy1H\n3fivN734rze9YBgJmzeG0dwYwIv7A1i7OppdXZQkAAIg8nMQZtklTFWUUWFGoVAoFAplDiwZ4QWQ\ntqx3vBjAiwcC+Pf/yMf//lY5/vb7xfiXfy/AJ3/jAVr/8xYejRrRctSNljY3zl9y4Mo1O/70mxUo\nK0mguSmA5qYA9uwch9UiyX1eBoAzQOIsyJqVlIUZIyYAMQFGjICBmC7MGA4SDABrlIUXK38tu5Sp\nZM2oMKNQKBQKhaIHI0mL593wqPvilPfH4wx+8KNCfPO1MjweNcLrSeKznxzBr3/0EawWCcFxDu0n\nXGhpc6PtuAv+ANGRVouA53ePo7kxiObGAEpLknN7gWnCLEk+1xNmjJFkxVgDSGM/mybMMsuZUwmz\nsrIyDA8Pz+31PsXQuGRDY6IPjYs+NC760LhkQ2OiT1lZWU4eZ0kLL4VwhMXffK8Yr/11CcYnDCgt\nSeALnx7Ghz80CqORvHyeBy5fs6OlzY3WNhc6Om3qzz+zLoyDTQE0NwWxcX0YbK7cyyQRkAQwUlIW\nZjwYSBnCzKApZSoTl6w6fZkpzErLKzEy8jBHL/DpgR4IsqEx0YfGRR8aF31oXLKhMdHnbSW8FPwB\nDt/+61L83feLEI1xqKuJ4X9+bgjvfacvS0z19ptxpN2F1nY3zpx3IJEg31BYkMSBxgAONgWwd/c4\n8vLEXP062Ugi6S8DTwYAIAAQAUkCA+gKs4KCEoyOjaXEGHQmMpm338IBeiDIhsZEHxoXfWhc9KFx\nyYbGRJ+3pfBSePDQiG++VoYf/KgAPM9i/dowvvyFIezfF9S17wqFWBw/7UJLmwtH2t0YHTMCAEwm\nEbufnVB7w6oqEk/y68yeNGGWAAMRHrcLfr9vUmGWyphpessy+s2eRmFGDwTZ0JjoQ+OiD42LPjQu\n2dCY6PO2Fl4KvX1m/Nm3yvGT172QJAbPbpvA7//uIJ7dFpr0Z0QRuHYjDy1H3Whtd+Hm7Tz1vtUN\nETQ3BXGwMYCtm0PgFqFHvrCwAI8fj5IbmcJMEgFGACP/xdKEGWuCxLCAKsK4DGGm7TFbfsKMHgiy\noTHRh8ZFHxoXfWhcsqEx0YcKLw23O6z42jfK8eYRDwDgwL4Avvw7g1i/Njrtzw6PGHGk3Y0329w4\ndcaJWJyIEq8nif17g2huCqDxhXE4HUJOXut0pAmv6ZhWmCl+ZUZ5KjO9xyythImlLczogSAbGhN9\naFz0oXHRh8YlGxoTfajw0uHiFeKCf+Y8ccF/37vG8KXPDaGuNj6jn49EWZw660Brmxut7W6MPDAB\nAAwGEc9uC+Hg/gAONgZm/HhzYVbCazokARAFMEgQgSYJACQyAIB0YSaxJllwTSLMNCXNxRBm9ECQ\nDY2JPjQu+tC46EPjkg2NiT5UeE2CJAHHTznxytcrcP1mHjhOwoc/9Bi/85lhlJXO3FZCkoCbt21o\nbXOhpd2Nq9ft6n0raqOkJNkUwI6tIXWyMhfkVHhNhySbyyIJRuIBMVOYcaR8yZg0ezKVr+mtY1Ls\nNHK/J5MeCLKhMdGHxkUfGhd9aFyyoTHRhwqvaZAk4OeHPfjaN8rR1W2F2STiN37tET7zyRHke/lZ\nP96jxwYcOeZGa5sbx045EYmQBjCng0fjC0EcbAqiaW8AXs+TlSQXVHhNh64wE0njP6DJhhl1hNkk\n65jmKMzogSAbGhN9aFz0oXHRh8YlGxoTfajwmiE8D/zrTwvw9W+VYWjEDLtdwKf+rwf4xP94ALt9\nblYS8TiDsxccePMoKUkODJoBACwrYfuWEJmSbAxg1crYrDXGkhJeUyFJIHsyeTBSkvSZSQIgzUSY\nZbr+awTaJMKMHgiyoTHRh8ZFHxoXfWhcsqEx0YcKr1kSizP4/j8X4Vt/WYoxnxH53iRe/tQI/vtH\nHsFinnsIJAno6LSgtd2NlqNuXLpqhygS4VBVGUNzIylJ7twxAfMMnmfZCK/pUIUZyZYxSMqGs6SU\nmS7MTPKeTA6pBebpwqyktAIjDx9jvkqZyxF6cNSHxkUfGhd9aFyyoTHRhwqvORIKsfjrfyjGX/5t\nCSZCBpSXxvHFl4fxy+8fhSEHmyvHfAZ5jZEL7SdcGJ8gD5qXJ2DfniCam4LYvy+AogL9cudTI7ym\nQyvMxAQYRkhfYA5G41dmRH5RKUbHfJhMmE2XMXsaoQdHfWhc9KFx0YfGJRsaE32o8HpCfH4Of/Gd\nUvz9PxYjFmdRXxfFlz4/hHcd8udspVAyyeD8JbuaDevutaj3bd4YwsEm4qC/bk1U1QpvG+E1HRnC\nzOt1wu8bzRBmmRkzFvrCLP3j0wI9OOpD46IPjYs+NC7Z0JjoQ4VXjhh5YMSrf1GGf/63QggCgw3r\nwvjKFwex7/nxnCdO7veY0drmRkubG+cv2cHzROGVliTQ3Ejc8z/wHhNCoce5feKngCxBKi8wh8jr\nZ8wYBlDXLRl1hFl683/K9X/5CDN6cNSHxkUfGhd9aFyyoTHRhwqvHNPdQ1zwf/qzfADArmfH8ZUv\nDmL7lvC8PF9wnEP7CRda2104eswNf4CUJK1WEXt2juNgYwAHGgOzssB4mpl1JnAmwozhIMEgm8tq\nhVlmpmxpCjN6cNSHxkUfGhd9aFyyoTHRhwqveeLWHSteebUCR9rdAICD+/34vS8MYd3q6V3w54og\nAJev2vFmmxvtJ/Jx645Jve+ZdWE5GxbEpmfCOSuDLjdyXoKVhRkjEnNZgAcDcXphxnBZuzGltHVM\nCyfM6MFRHxoXfWhc9KFxyYbGRB8qvOaZ85fseOXrFTh30QGGkfD+d/vwpc8NoaZ6/lzrASIwLl0Z\nx5F24hl2+rwDiQRRW4UFSRxoJO75e/eMIy9vbnYYy5EF731LE2ZJ8rmeMGOMpFzJKh5lbJowy/Qy\ny6UwowdHfWhc9KFx0Yf
|
||
|
"text/plain": [
|
||
|
"<matplotlib.figure.Figure at 0x7f982c9aa198>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"parallel_on(ds1_exo, \"Exercice\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"collapsed": true,
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 0,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 19,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"# DS2"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"metadata": {
|
||
|
"collapsed": true,
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"quest_DS2 = quest_pov[quest_pov[\"Nom\"] == \"DS2\"]\n",
|
||
|
"exo_DS2 = exo_pov[exo_pov[\"Nom\"] == \"DS2\"]\n",
|
||
|
"eval_DS2 = eval_pov[eval_pov[\"Nom\"] == \"DS2\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 0,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 23,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"On enlèves les absents"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 14,
|
||
|
"metadata": {
|
||
|
"collapsed": true,
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"eval_DS2 = eval_DS2[eval_DS2[\"Mark\"] > 0]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 15,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 4,
|
||
|
"height": 11,
|
||
|
"hidden": false,
|
||
|
"row": 23,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"<matplotlib.axes._subplots.AxesSubplot at 0x7f982c7c1908>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 15,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/.virtualenvs/enseignement/lib/python3.6/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans\n",
|
||
|
" (prop.get_family(), self.defaultFamily[fontext]))\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAFKCAYAAAC6gp7sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEbFJREFUeJzt3V9s1fX5wPHnSGUVTAutojkFxjpLFpiDOBjsj9MB2xLR\nZNlFM4km6M0EE6NZNgkXcjMTInYQEki92HC3XpEomt2YaCI3/NHQoUNMqunSLQyKTBBo2nN2sZ/8\n9vuj58g5z2nP6et1Jfbrp08+Pc3b76c9XwrlcrkcAECKG6Z6AABoZUILAImEFgASCS0AJBJaAEgk\ntACQSGgBIFFb1sKjo6N1W6tYLNZ1vZnIHtbOHtbOHtaHfaxdvfewWCx+7sfc0QJAIqEFgERCCwCJ\nhBYAEgktACQSWgBIJLQAkEhoASBRVQ+seOWVV+L111+PQqEQixYtiq1bt8bs2bOzZwOAplfxjnZs\nbCxee+212LlzZwwMDESpVIrDhw83YjYAaHpVHR2XSqUYHx+PycnJGB8fj/nz52fPBQAtoeLRcVdX\nVzzwwAOxZcuWmD17dqxYsSJWrFjRiNkAoOkVyuVy+YsuuHjxYgwMDMRTTz0Vc+bMid/97nexdu3a\n+OEPf9ioGQGa1sjGVXVfc9Gho3VfkzwV72iHhoZiwYIF0dHRERERa9asiffff79iaP3tPdOLPayd\nPaydPawf+1ibafW399xyyy1x+vTpuHr1apTL5RgaGoqenp66DQcAraziHW1fX1+sXbs2nn766Zg1\na1YsWbIkNmzY0IjZAKDpVfU+2v7+/ujv78+eBQBajidDAUAioQWAREILAImEFgASCS0AJBJaAEgk\ntACQSGgBIJHQAkAioQWAREILAImEFgASCS0AJBJaAEgktACQSGgBIJHQAkAioQWAREILAImEFgAS\nCS0AJBJaAEgktACQSGgBIJHQAkAioQWAREILAInaKl0wOjoau3fvvvbnM2fORH9/f2zcuDF1MABo\nBRVDWywWY9euXRERUSqV4pe//GV85zvfSR8MAFrBlzo6Hhoaittvvz1uvfXWrHkAoKV8qdC+9dZb\n8f3vfz9rFgBoORWPjj8zMTERx44di02bNlV1fbFYvO6hGrHeTGQPa2cPazfT9nAkad2Zto8ZGrWH\nVYf27bffjq997Wsxb968qq4fHR297qH+t2KxWNf1ZiJ7WDt7WDt7WD/2sTb1fi1+UbSrPjp2bAwA\nX15Vob1y5UqcOHEi1qxZkz0PALSUqo6O29vb4w9/+EP2LADQcjwZCgASCS0AJBJaAEgktACQSGgB\nIJHQAkAioQWAREILAImEFgASCS0AJBJaAEgktACQSGgBIJHQAkAioQWAREILAImEFgASCS0AJBJa\nAEgktACQSGgBIJHQAkAioQWAREILAImEFgASCS0AJBJaAEjUVs1Fly5disHBwRgZGYlCoRBbtmyJ\npUuXZs8GAE2vqtAeOHAgVq5cGb/61a9iYmIirl69mj0XALSEikfHn376abz33nuxbt26iIhoa2uL\nuXPnpg8GAK2gUC6Xy190wYcffhgvvPBCLFy4MD766KPo7e2NzZs3R3t7e6NmBGhaIxtX1X3NRYeO\n1n1N8lQ8Op6cnIzh4eF49NFHo6+vLw4cOBAHDx6MX/ziF1/4342OjtZtyGKxWNf1ZiJ7WDt7WDt7\nWD/2sTb1fi0Wi8XP/VjFo+Pu7u7o7u6Ovr6+iIhYu3ZtDA8P1204AGhlFUM7b9686O7uvlb+oaGh\nWLhwYfpgANAKqvqt40cffTT27t0bExMTsWDBgti6dWv2XADQEqoK7ZIlS2Lnzp3ZswBAy/FkKABI\nJLQAkEhoASCR0AJAIqEFgERCCwCJhBYAEgktACQSWgBIJLQAkEhoASCR0AJAIqEFgERCCwCJhBYA\nEgktACQSWgBIJLQAkEhoASCR0AJAIqEFgERCCwCJhBYAEgktACQSWgBIJLQAkKitmosef/zxaG9v\njxtuuCFmzZoVO3fuzJ4LAFpCVaGNiNixY0d0dHRkzgIALcfRMQAkqvqO9tlnn42IiB//+MexYcOG\ntIEAoJUUyuVyudJFY2Nj0dXVFRcuXIjf/va38cgjj8SyZcsaMR9AUxvZuKruay46dLTua5Knqjva\nrq6uiIjo7OyM1atXxwcffFAxtKOjo7VP91+KxWJd15uJ7GHt7GHt7GH92Mfa1Pu1WCwWP/djFX9G\ne+XKlbh8+fK1fz5x4kQsXry4bsMBQCureEd74cKFeP755yMiYnJyMn7wgx/EypUr0wcDgFZQMbS3\n3XZb7Nq1qxGzAEDL8fYeAEgktACQSGgBIJHQAkAioQWAREILAImEFgASCS0AJBJaAEgktACQSGgB\nIJHQAkAioQWAREILAImEFgASCS0AJBJaAEgktACQSGgBIJHQAkAioQWAREILAImEFgASCS0AJBJa\nAEgktACQSGgBIFHVoS2VSvGb3/wmdu7cmTkPALSUqkP76quvRk9PT+YsANByqgrtuXPn4vjx47F+\n/frseQCgpbRVc9GLL74YDz30UFy+fLnqhYvF4nUP1Yj1ZiJ7WDt7WLt67+HIxlV1XW/RoaN1XW+k\nrqv9t+n8Wqz31yTFoaMN28OKoT127Fh0dnZGb29vnDx5suqFR0dHaxrsPxWLxbquNxPZw9rZw9o1\nwx5O9/k+0yxzTmf17tTnqRjaU6dOxdGjR+Ptt9+O8fHxuHz5cuzduzeeeOKJug0IAK2qYmg3bdoU\nmzZtioiIkydPxssvvyyyAFAl76MFgERV/TLUZ5YvXx7Lly/PmgUAWo47WgBIJLQAkEhoASCR0AJA\nIqEFgERCCwCJhBYAEgktACQSWgBIJLQAkEhoASCR0AJAIqEFgERCCwCJhBYAEgktACQSWgBIJLQA\nkEhoASCR0AJAIqEFgERCCwCJhBYAEgktACQSWgBIJLQAkKit0gXj4+OxY8eOmJiYiMnJyVi7dm30\n9/c3YjYAaHoVQ3vjjTfGjh07or29PSYmJuKZZ56JlStXxtKlSxsxHwA0tYpHx4VCIdrb2yMiYnJy\nMiYnJ6NQKKQPBgCtoOIdbUREqVSKp59+Ov7+97/HT3/60+jr68ueCwBaQqFcLpervfjSpUvx/PPP\nxyOPPBKLFy/OnAugKiMbV031CA236NDRqR7hCzXD16SRe1jVHe1n5s6dG8uXL4933nmnYmhHR0dr\nGuw/FYvFuq43E9nD2tnD2tnD+rGPtat3pz5PxZ/R/vOf/4xLly5FxL9/A/nEiRPR09NTt+EAoJVV\nvKM9f/587Nu3L0qlUpTL5fjud78b3/72txsxGwA0vYqh/epXvxrPPfdcI2YBgJbjyVAAkEhoASCR\n0AJAIqEFgERCCwCJhBYAEgktACQSWgBIJLQAkEhoASCR0AJAIqEFgERCCwCJhBYAEgktACQSWgBI\nJLQAkEhoASCR0AJAIqEFgERCCwCJhBYAEgktACQSWgBIJLQAkEhoASCR0AJAorZKF5w9ezb27dsX\nH3/8cRQKhdiwYUPcd999jZgNAJpexdDOmjUrHn744ejt7Y3Lly/Htm3b4lvf+lYsXLiwEfMBQFOr\neHQ8f/786O3tjYiIm266KXp6emJsbCx9MABoBV/qZ7RnzpyJ4eHhuOOOO7LmAYCWUvHo+DNXrlyJ\ngYGB2Lx5c8yZM6fi9cVisabBstebiexh7exh7eq9hyN1Xa15TOfXYrN8TRq1h1WFdmJiIgYGBuLu\nu++ONWvWVLXw6OhoTYP9p2KxWNf1ZiJ7WDt7WDt7WD/2sXb17tTnqXh0XC6XY3BwMHp6euL++++v\n21AAMBNUvKM9depUvPnmm7F48eL49a9/HRERDz74YNx1113pwwFAs6sY2m984xvx0ksvNWIWAGg5\nngwFAImEFgASCS0AJBJaAEgktACQSGgBIJHQAkAioQWAREILAImEFgASCS0AJBJaAEgktACQSGgB\nIJHQAkAioQWAREILAIm
|
||
|
"text/plain": [
|
||
|
"<matplotlib.figure.Figure at 0x7f982c8ac630>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"eval_DS2[\"Mark\"].hist(bins = 20, range = (0,10))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 16,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 8,
|
||
|
"height": 7,
|
||
|
"hidden": false,
|
||
|
"row": 24,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"count 28.00\n",
|
||
|
"mean 7.48\n",
|
||
|
"std 1.64\n",
|
||
|
"min 2.50\n",
|
||
|
"25% 6.50\n",
|
||
|
"50% 7.50\n",
|
||
|
"75% 9.00\n",
|
||
|
"max 10.00\n",
|
||
|
"Name: Mark, dtype: float64"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 16,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"eval_DS2[eval_DS2[\"Mark\"]>0][\"Mark\"].describe()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"collapsed": true,
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 0,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 27,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"# Trimestre 2"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 17,
|
||
|
"metadata": {
|
||
|
"collapsed": true,
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"flat_T2 = flat[flat[\"Trimestre\"] == 2]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 18,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:485: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Mark\"] = compute_marks(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:486: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Level\"] = compute_level(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:487: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Latex_rep\"] = compute_latex_rep(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:488: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Normalized\"] = compute_normalized(df)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"quest_T2, exo_T2, eval_T2 = digest_flat_df(flat_T2)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 19,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 0,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 31,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array(['DS4', 'DS5', 'DS6', 'Calcul mental T2', 'DM1', 'CMT3'], dtype=object)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 19,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"flat_T2[\"Nom\"].unique()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 8,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 31,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"## DS4"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 20,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"ds4_flat = flat_T2[flat_T2[\"Nom\"]==\"DS4\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 21,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:485: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Mark\"] = compute_marks(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:486: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Level\"] = compute_level(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:487: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Latex_rep\"] = compute_latex_rep(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:488: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Normalized\"] = compute_normalized(df)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds4_quest, ds4_exo, ds4_eval = digest_flat_df(ds4_flat)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"hidden": true
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": true
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"Le devoir est sur 10 et personne ne peut avoir au dessus!"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 22,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"ds4_eval = tranform_scale(ds4_eval, 10, \"min\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 23,
|
||
|
"metadata": {
|
||
|
"scrolled": true
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"numpy.datetime64('2016-12-02T00:00:00.000000000')"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 23,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds4_eval[\"Date\"].unique()[0]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Histogramme des résultats"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 24,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/.virtualenvs/enseignement/lib/python3.6/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans\n",
|
||
|
" (prop.get_family(), self.defaultFamily[fontext]))\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAFbCAYAAAByCE/SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVPWi//HPCJoXFIXwMni/QKkp3hIv6RYvqWi6PerR\n0jTdmVk/c9suxU6apzTTULOtByvz0i7bWWpZ7d3Nk27TCiILleNGt/cxSUASRGhm1vnDn3MiTFDm\nyzD4fj2Pz+PMWus7n/nOgg9rzc1mWZYlAABgRCVfBwAAoCKjaAEAMIiiBQDAIIoWAACDKFoAAAyi\naAEAMIiihV+JiYnRqlWrfB0DAEqMooXPzZ49WxMnTrzissjISL377ruey2+//fZvrvtrSUlJioyM\n1MmTJ72QEuXB5s2bFRkZqcjISN1yyy3q1KmThg0bpmeffVanTp0qsv4777yjESNGqGPHjurQoYMG\nDRqk//iP/7ji2Hl5eYqNjVVkZKSSkpJM3xXcQAJ9HQC4FiEhIb6O8JsKCgpUpUoVX8eoEK42lwEB\nAdqxY4ckKTc3V6mpqVq/fr2GDBmil19+WZ07d5Z0qZSfeuopzZo1Sz169JAkHT58WJ999tkVx50/\nf74aNWqkQ4cOGbhHuJFxRAu/8utTx59++qmGDx+u9u3bq3Pnzho5cqQOHDigkydP6p577pEk9e3b\nV5GRkRo/frwkybIsrVmzRn379lXbtm3Vr18/rVu3rtDtZGVlafr06YqKilL37t21fPlyzZo1q9DR\n9Pjx4zVnzhwtX75cPXv2VJ8+fSRJ27Zt06hRo9SpUyd17dpVU6ZM0ZEjRzzbnTx5UpGRkdq2bZsm\nT56s9u3ba+DAgfr666915swZ3X///YqKitLgwYMLHVl99dVXioyM1I4dO/Tv//7vateunUaMGKG0\ntDSlpaVp7Nixat++vUaOHFmkLPbt26dJkyapQ4cOio6O1sMPP3zFI8Bfz/WyZcv0xBNPqGPHjura\ntauWLl0qt9vtWScnJ0dz585VdHS02rZtqxEjRmjXrl1F7uuvjxD79++vF1980XM5MjJSGzZs0KOP\nPqpOnTrp8ccfv2q2sLAwhYWFqWnTpho0aJD+8pe/KDIyUnFxcXK5XJIu7Rt9+vTRuHHj1KxZMzVr\n1kz9+vXTs88+W2S8LVu2KDU1tdjbBa4HRQu/9eOPP2rGjBmKjY3V+++/r7/+9a+aMGGCAgIC1KBB\nA08hb9q0Sbt27fL8Yn/jjTf0wgsvaMqUKXr//fc1efJkxcfHa9OmTZ6x4+LidPDgQSUkJGj9+vU6\nc+aMPv300yIZ/va3vykzM1Pr1q3Tq6++KunS0diDDz6oLVu2aO3atapUqZIeeOABFRQUFNr2hRde\n0NixY7V161a1aNFCM2fO1KxZszR69Ght2bJFLVu21KOPPqqff/650HbLli3TjBkztHnzZlWuXFkz\nZ87UU089penTp3uui4uL86x/6NAhjR8/XlFRUXr77be1fv16VapUSZMmTVJ+fv5V5/i1115T3bp1\n9fbbbysuLk4bNmzQa6+95lk+Z84c7dq1S0uWLNG7776rjh07aurUqTp8+HBJHsJCVq5cqQ4dOmjL\nli2aMWPGNW0bGBio++67T8ePH9eBAwckXSrjffv2Ffoj50oOHz6sxYsXa+nSpZyRgBkW4GOzZs2y\nbr31VisqKqrIv4iICGvr1q2edfv06WOtXLnSsizL2r9/vxUREWGdOHHiiuMmJiZecXmvXr2s5557\nrtB1CxYssGJiYizLsqwjR45YERER1u7duz3LCwoKrF69elkTJkzwXDdu3DhrwIABlsvluur9y8rK\nsiIiIqykpCTLsizrxIkTVkREhLV27VrPOt99950VERFhrVmzxnPd5ft38OBBy7Is68svv7QiIiKs\nTz75xLPOhx9+aEVERFh///vfPdd9/PHHVkREhJWTk2NZ1qX5nTFjRqFM+fn5Vrt27QqN9Wt9+vSx\nxo4dW+i6+Ph4q1evXpZlWdbRo0etiIgI6/PPPy+0zvDhw63Zs2cXuq+JiYmF1unXr5+1YsUKz+WI\niAgrLi7uN7Nc9s4771i33nrrFZcdOnTIioiIsD744APLsiwrPT3dGjNmjBUREWH16dPHeuSRR6w3\n33zTys3N9Wxz4cIFKzY21tq0adNV8wKlwXO0KBfatWun5557rsj1AwYM+M1tIiMj1bNnTw0dOlTd\nu3fX7bffrgEDBqhBgwa/uU1OTo5++OEHdenSpdD1t99+uzZs2KC8vDzPadf27dt7lleuXFlt27ZV\nbm5uoe3atGmjSpUKnxhKTU3Vn//8Z6WmpiorK8tzvcPhUKdOnTyXb7nlFs//w8LCPPfpsptvvlmS\nlJGRUeR+l2S7zMxM1ahRQykpKTp27Jg6dOhQaJz8/HwdPXpUVxMVFVXocseOHbV69Wrl5OR45uny\nc6KXde7cWXv37r3quFfSrl27a97mSmw2m6RLc7Nx40YdPnxYiYmJ+u6777RkyRKtXr1amzZtUmho\nqJ555hlFRERo5MiRXrlt4EooWpQLVatWVZMmTa5pm4CAAL3yyitKSUnR7t279fHHHys+Pl4vvPCC\n5/nS0rj8C/tqqlWrVuhyXl6eJk2apE6dOunZZ5/1lF5sbGyRU8CBgf/343f5tq50nfWrL9iqXLly\nkRxX2u7yc6lut1vDhg3TlClTimxXu3btYu5h6fz6j5DLnE5nket+PZfXKi0tTZLUqFGjQte3aNFC\nLVq00JgxYzRt2jQNHDhQGzdu1MMPP6w9e/bo9OnT+vvf/15om3vvvVfdunXTmjVrSpUJkCha+Dmb\nzaZ27dqpXbt2mjp1qiZPnqzNmzerT58+nufbfvninaCgINWvX1+JiYmFyvjrr79Ww4YNVa1aNbVs\n2VKStHfvXnXr1k3SpWLYv3+/mjZtetU8hw8fVmZmpv74xz+qRYsWkqTk5OQiZVmW2rZtq4MHD6px\n48Yl+uPhl7777rtCl7/99lvVq1dPQUFBatWqlaRLb6Pq3bu3Z52kpCTdeuutkv7vVeLp6eme5RkZ\nGTpz5sx13Zff4nQ6tW7dOjVp0kStW7f+zfUaNmyoqlWres4SrFmzptAfQOnp6Zo8ebIWLlxY5Egd\nuF4ULfxWcnKy9uzZo549eyosLEzHjh3TwYMHPacB7Xa7KlWqpB07dmjw4MGqUqWKatasqSlTpui5\n555T06ZNdfvtt+vLL7/Uxo0bNXfuXElS06ZN1adPH82fP1//+Z//qZCQEL366qvKyckptqjsdruq\nVKmi1157TZMmTdKpU6f0/PPPX3PBedPUqVM1cuRI/elPf9KECRNUp04dnTp1Sp9++qkmTJhQ5Ajw\nl1JTU/Xiiy9qyJAh2rdvnzZs2KBHHnlEktS4cWMNHDhQ8+fP1/z582W327Vx40alpaXp+eefl3Tp\nTEXHjh31yiuvqHnz5nI6nVq2bFmpX3T0448/Sir89p6DBw/q5Zdf9hxFz5s3T2FhYYqOjlaDBg2U\nlZWlDRs2KCcnR/369ZMkNWvWrNC41atXl3SpkBs2bFiqjMBlFC38Vs2aNbV371698cYbys7OVlhY\nmIYOHapp06ZJuvRc5cyZM/XSSy95jlBee+013X333crLy1NCQoLmz5+v+vXr69FHH9WoUaM8Yz/7\n7LOaN2+e7r//flWvXl1jxoxR9+7di7xy+NdCQkK0ZMkSLV26VO+8845atGihOXPmlPhDNkxo0aKF\n3nzzTS1fvlyTJ09Wfn6+6tWrp+joaNWsWfOq244fP14Oh0P/9m//psqVK+uee+7Rvffe61m+YMEC\nLV68WI899phycnIUERGhhIQEz9G8JC1cuFBPPvmkxowZo7p16+pPf/qTjh8/ft33x+VyqWfPnrLZ\nbKpevboaNmyobt26KT4+XuHh4Z71evTooc2bN+utt95SZmamatWqpcjISL300kue99UCZcFm+fKc\nFuAnXC6XBg0apJiYGM2
|
||
|
"text/plain": [
|
||
|
"<matplotlib.figure.Figure at 0x7f982ae87550>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"f, (ax_hist, ax_box) = plt.subplots(2, sharex=True, \n",
|
||
|
" gridspec_kw={\"height_ratios\": (.85, .15)})\n",
|
||
|
"marks_hist(ds4_eval, ax = ax_hist, rwidth=0.9)\n",
|
||
|
"ds4_desc = ds4_eval[\"Mark\"].describe()\n",
|
||
|
"m = ds4_desc[\"mean\"]\n",
|
||
|
"ax_hist.plot([m,m], [0,6])\n",
|
||
|
"ds4_eval[\"Mark\"].plot.box(ax = ax_box, vert=False, widths = 0.6)\n",
|
||
|
"ax_hist.annotate(round(ds4_desc[\"mean\"],1), xy=(ds4_desc[\"mean\"] + 0.2, 0.3))\n",
|
||
|
"ax_box.set_yticklabels(\"\")\n",
|
||
|
"for e in [\"min\", \"25%\", \"50%\", \"75%\", \"max\"]:\n",
|
||
|
" ax_box.annotate(ds4_desc[e], xy=(ds4_desc[e] - 0.2,1.4))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 25,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"count 28.00\n",
|
||
|
"mean 6.14\n",
|
||
|
"std 2.71\n",
|
||
|
"min 0.00\n",
|
||
|
"25% 4.25\n",
|
||
|
"50% 6.00\n",
|
||
|
"75% 7.62\n",
|
||
|
"max 10.00\n",
|
||
|
"Name: Mark, dtype: float64"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 25,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds4_desc"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 0,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 46,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"## DS5"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 26,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"ds5_flat = flat_T2[flat_T2[\"Nom\"]==\"DS5\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 27,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:485: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Mark\"] = compute_marks(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:486: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Level\"] = compute_level(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:487: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Latex_rep\"] = compute_latex_rep(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:488: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Normalized\"] = compute_normalized(df)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds5_quest, ds5_exo, ds5_eval = digest_flat_df(ds5_flat)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 28,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"ds5_eval = tranform_scale(ds5_eval, 10, 'min')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 29,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array(['2017-01-18T00:00:00.000000000'], dtype='datetime64[ns]')"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 29,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds5_eval[\"Date\"].unique()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 30,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Eleve</th>\n",
|
||
|
" <th>Mark</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>ABDILLAH Nourouzamane</td>\n",
|
||
|
" <td>7.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>ABDOU Mouhamadi</td>\n",
|
||
|
" <td>9.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>ABOUDOU Amayoune</td>\n",
|
||
|
" <td>10.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>AHAMED Tansia</td>\n",
|
||
|
" <td>6.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>AHMED Yancoub</td>\n",
|
||
|
" <td>10.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>5</th>\n",
|
||
|
" <td>ALI Cynthia</td>\n",
|
||
|
" <td>9.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>6</th>\n",
|
||
|
" <td>ANDRIAMAHAZAKA Néni Erika</td>\n",
|
||
|
" <td>7.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>7</th>\n",
|
||
|
" <td>ATTOUMANI Antibati</td>\n",
|
||
|
" <td>4.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>8</th>\n",
|
||
|
" <td>ATTOUMANI OUSSENI Jeannette</td>\n",
|
||
|
" <td>5.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>9</th>\n",
|
||
|
" <td>CHAMASSE Nadjima</td>\n",
|
||
|
" <td>9.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>10</th>\n",
|
||
|
" <td>CHARMANE RAFION Elda</td>\n",
|
||
|
" <td>10.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>11</th>\n",
|
||
|
" <td>DAOU Naël</td>\n",
|
||
|
" <td>5.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>12</th>\n",
|
||
|
" <td>DARMINE Sadya</td>\n",
|
||
|
" <td>7.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>13</th>\n",
|
||
|
" <td>HAMIDOU Fayssoil</td>\n",
|
||
|
" <td>6.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>14</th>\n",
|
||
|
" <td>HOUMADI Mouhouyi</td>\n",
|
||
|
" <td>9.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>15</th>\n",
|
||
|
" <td>MADI SAID Zaynati</td>\n",
|
||
|
" <td>10.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>16</th>\n",
|
||
|
" <td>MALIDE Elza</td>\n",
|
||
|
" <td>10.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>17</th>\n",
|
||
|
" <td>MOUHAMADI ANDILI Issina</td>\n",
|
||
|
" <td>10.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>18</th>\n",
|
||
|
" <td>MOUSSA Samra</td>\n",
|
||
|
" <td>8.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>19</th>\n",
|
||
|
" <td>OUSSENI Kaïssoune</td>\n",
|
||
|
" <td>5.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>20</th>\n",
|
||
|
" <td>OUSSENI Saandati</td>\n",
|
||
|
" <td>10.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>21</th>\n",
|
||
|
" <td>SAID Amina</td>\n",
|
||
|
" <td>10.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>22</th>\n",
|
||
|
" <td>SAID Charfia</td>\n",
|
||
|
" <td>9.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>23</th>\n",
|
||
|
" <td>SAID Hachimia</td>\n",
|
||
|
" <td>5.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>24</th>\n",
|
||
|
" <td>SAID Nasra</td>\n",
|
||
|
" <td>10.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>25</th>\n",
|
||
|
" <td>SALIM Laïlouna</td>\n",
|
||
|
" <td>8.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>26</th>\n",
|
||
|
" <td>SIDI Yansilouna</td>\n",
|
||
|
" <td>7.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>27</th>\n",
|
||
|
" <td>SOILIHI Nadjdat</td>\n",
|
||
|
" <td>6.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Eleve Mark\n",
|
||
|
"0 ABDILLAH Nourouzamane 7.5\n",
|
||
|
"1 ABDOU Mouhamadi 9.5\n",
|
||
|
"2 ABOUDOU Amayoune 10.0\n",
|
||
|
"3 AHAMED Tansia 6.0\n",
|
||
|
"4 AHMED Yancoub 10.0\n",
|
||
|
"5 ALI Cynthia 9.0\n",
|
||
|
"6 ANDRIAMAHAZAKA Néni Erika 7.5\n",
|
||
|
"7 ATTOUMANI Antibati 4.0\n",
|
||
|
"8 ATTOUMANI OUSSENI Jeannette 5.0\n",
|
||
|
"9 CHAMASSE Nadjima 9.5\n",
|
||
|
"10 CHARMANE RAFION Elda 10.0\n",
|
||
|
"11 DAOU Naël 5.5\n",
|
||
|
"12 DARMINE Sadya 7.5\n",
|
||
|
"13 HAMIDOU Fayssoil 6.5\n",
|
||
|
"14 HOUMADI Mouhouyi 9.5\n",
|
||
|
"15 MADI SAID Zaynati 10.0\n",
|
||
|
"16 MALIDE Elza 10.0\n",
|
||
|
"17 MOUHAMADI ANDILI Issina 10.0\n",
|
||
|
"18 MOUSSA Samra 8.0\n",
|
||
|
"19 OUSSENI Kaïssoune 5.5\n",
|
||
|
"20 OUSSENI Saandati 10.0\n",
|
||
|
"21 SAID Amina 10.0\n",
|
||
|
"22 SAID Charfia 9.0\n",
|
||
|
"23 SAID Hachimia 5.5\n",
|
||
|
"24 SAID Nasra 10.0\n",
|
||
|
"25 SALIM Laïlouna 8.0\n",
|
||
|
"26 SIDI Yansilouna 7.5\n",
|
||
|
"27 SOILIHI Nadjdat 6.5"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 30,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds5_eval[[\"Eleve\", \"Mark\"]]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 0,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 50,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"## DS6"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 31,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"ds6_flat = flat_T2[flat_T2[\"Nom\"]==\"DS6\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 32,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:485: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Mark\"] = compute_marks(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:486: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Level\"] = compute_level(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:487: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Latex_rep\"] = compute_latex_rep(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:488: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Normalized\"] = compute_normalized(df)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds6_quest, ds6_exo, ds6_eval = digest_flat_df(ds6_flat)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 33,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"ds6_eval = tranform_scale(ds6_eval, 10, 'min')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 34,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array(['2017-02-01T00:00:00.000000000'], dtype='datetime64[ns]')"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 34,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds6_eval[\"Date\"].unique()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 35,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Eleve</th>\n",
|
||
|
" <th>Mark</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>ABDILLAH Nourouzamane</td>\n",
|
||
|
" <td>6.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>ABDOU Mouhamadi</td>\n",
|
||
|
" <td>8.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>ABOUDOU Amayoune</td>\n",
|
||
|
" <td>9.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>AHAMED Tansia</td>\n",
|
||
|
" <td>6.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>AHMED Yancoub</td>\n",
|
||
|
" <td>7.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>5</th>\n",
|
||
|
" <td>ALI Cynthia</td>\n",
|
||
|
" <td>9.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>6</th>\n",
|
||
|
" <td>ANDRIAMAHAZAKA Néni Erika</td>\n",
|
||
|
" <td>7.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>7</th>\n",
|
||
|
" <td>ATTOUMANI Antibati</td>\n",
|
||
|
" <td>0.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>8</th>\n",
|
||
|
" <td>ATTOUMANI OUSSENI Jeannette</td>\n",
|
||
|
" <td>8.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>9</th>\n",
|
||
|
" <td>CHAMASSE Nadjima</td>\n",
|
||
|
" <td>6.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>10</th>\n",
|
||
|
" <td>CHARMANE RAFION Elda</td>\n",
|
||
|
" <td>8.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>11</th>\n",
|
||
|
" <td>DAOU Naël</td>\n",
|
||
|
" <td>8.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>12</th>\n",
|
||
|
" <td>DARMINE Sadya</td>\n",
|
||
|
" <td>7.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>13</th>\n",
|
||
|
" <td>HAMIDOU Fayssoil</td>\n",
|
||
|
" <td>0.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>14</th>\n",
|
||
|
" <td>HOUMADI Mouhouyi</td>\n",
|
||
|
" <td>8.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>15</th>\n",
|
||
|
" <td>MADI SAID Zaynati</td>\n",
|
||
|
" <td>8.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>16</th>\n",
|
||
|
" <td>MALIDE Elza</td>\n",
|
||
|
" <td>6.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>17</th>\n",
|
||
|
" <td>MOUHAMADI ANDILI Issina</td>\n",
|
||
|
" <td>8.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>18</th>\n",
|
||
|
" <td>MOUSSA Samra</td>\n",
|
||
|
" <td>9.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>19</th>\n",
|
||
|
" <td>OUSSENI Kaïssoune</td>\n",
|
||
|
" <td>7.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>20</th>\n",
|
||
|
" <td>OUSSENI Saandati</td>\n",
|
||
|
" <td>9.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>21</th>\n",
|
||
|
" <td>SAID Amina</td>\n",
|
||
|
" <td>9.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>22</th>\n",
|
||
|
" <td>SAID Charfia</td>\n",
|
||
|
" <td>9.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>23</th>\n",
|
||
|
" <td>SAID Hachimia</td>\n",
|
||
|
" <td>5.5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>24</th>\n",
|
||
|
" <td>SAID Nasra</td>\n",
|
||
|
" <td>10.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>25</th>\n",
|
||
|
" <td>SALIM Laïlouna</td>\n",
|
||
|
" <td>7.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>26</th>\n",
|
||
|
" <td>SIDI Yansilouna</td>\n",
|
||
|
" <td>7.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>27</th>\n",
|
||
|
" <td>SOILIHI Nadjdat</td>\n",
|
||
|
" <td>6.0</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Eleve Mark\n",
|
||
|
"0 ABDILLAH Nourouzamane 6.0\n",
|
||
|
"1 ABDOU Mouhamadi 8.5\n",
|
||
|
"2 ABOUDOU Amayoune 9.5\n",
|
||
|
"3 AHAMED Tansia 6.5\n",
|
||
|
"4 AHMED Yancoub 7.5\n",
|
||
|
"5 ALI Cynthia 9.0\n",
|
||
|
"6 ANDRIAMAHAZAKA Néni Erika 7.5\n",
|
||
|
"7 ATTOUMANI Antibati 0.0\n",
|
||
|
"8 ATTOUMANI OUSSENI Jeannette 8.0\n",
|
||
|
"9 CHAMASSE Nadjima 6.0\n",
|
||
|
"10 CHARMANE RAFION Elda 8.0\n",
|
||
|
"11 DAOU Naël 8.0\n",
|
||
|
"12 DARMINE Sadya 7.5\n",
|
||
|
"13 HAMIDOU Fayssoil 0.0\n",
|
||
|
"14 HOUMADI Mouhouyi 8.0\n",
|
||
|
"15 MADI SAID Zaynati 8.5\n",
|
||
|
"16 MALIDE Elza 6.0\n",
|
||
|
"17 MOUHAMADI ANDILI Issina 8.0\n",
|
||
|
"18 MOUSSA Samra 9.0\n",
|
||
|
"19 OUSSENI Kaïssoune 7.5\n",
|
||
|
"20 OUSSENI Saandati 9.5\n",
|
||
|
"21 SAID Amina 9.5\n",
|
||
|
"22 SAID Charfia 9.0\n",
|
||
|
"23 SAID Hachimia 5.5\n",
|
||
|
"24 SAID Nasra 10.0\n",
|
||
|
"25 SALIM Laïlouna 7.0\n",
|
||
|
"26 SIDI Yansilouna 7.0\n",
|
||
|
"27 SOILIHI Nadjdat 6.0"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 35,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds6_eval[[\"Eleve\", \"Mark\"]]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 4,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 50,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"## Calcul mental T2"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 36,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"CMT2_flat = flat_T2[flat_T2[\"Nom\"]==\"Calcul mental T2\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 37,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:485: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Mark\"] = compute_marks(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:486: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Level\"] = compute_level(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:487: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Latex_rep\"] = compute_latex_rep(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:488: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Normalized\"] = compute_normalized(df)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"CMT2_quest, CMT2_exo, CMT2_eval = digest_flat_df(CMT2_flat)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 38,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"CMT2_eval = tranform_scale(CMT2_eval, 20, 'prop')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 39,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Eleve</th>\n",
|
||
|
" <th>Mark_barem</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>ABDILLAH Nourouzamane</td>\n",
|
||
|
" <td>11 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>ABDOU Mouhamadi</td>\n",
|
||
|
" <td>16 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>ABOUDOU Amayoune</td>\n",
|
||
|
" <td>19 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>AHAMED Tansia</td>\n",
|
||
|
" <td>14 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>AHMED Yancoub</td>\n",
|
||
|
" <td>15 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>5</th>\n",
|
||
|
" <td>ALI Cynthia</td>\n",
|
||
|
" <td>19 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>6</th>\n",
|
||
|
" <td>ANDRIAMAHAZAKA Néni Erika</td>\n",
|
||
|
" <td>19 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>7</th>\n",
|
||
|
" <td>ATTOUMANI Antibati</td>\n",
|
||
|
" <td>10 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>8</th>\n",
|
||
|
" <td>ATTOUMANI OUSSENI Jeannette</td>\n",
|
||
|
" <td>19 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>9</th>\n",
|
||
|
" <td>CHAMASSE Nadjima</td>\n",
|
||
|
" <td>18 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>10</th>\n",
|
||
|
" <td>CHARMANE RAFION Elda</td>\n",
|
||
|
" <td>18 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>11</th>\n",
|
||
|
" <td>DAOU Naël</td>\n",
|
||
|
" <td>11,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>12</th>\n",
|
||
|
" <td>DARMINE Sadya</td>\n",
|
||
|
" <td>10 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>13</th>\n",
|
||
|
" <td>HAMIDOU Fayssoil</td>\n",
|
||
|
" <td>11 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>14</th>\n",
|
||
|
" <td>HOUMADI Mouhouyi</td>\n",
|
||
|
" <td>16,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>15</th>\n",
|
||
|
" <td>MADI SAID Zaynati</td>\n",
|
||
|
" <td>15 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>16</th>\n",
|
||
|
" <td>MALIDE Elza</td>\n",
|
||
|
" <td>11 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>17</th>\n",
|
||
|
" <td>MOUHAMADI ANDILI Issina</td>\n",
|
||
|
" <td>18 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>18</th>\n",
|
||
|
" <td>MOUSSA Samra</td>\n",
|
||
|
" <td>15 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>19</th>\n",
|
||
|
" <td>OUSSENI Kaïssoune</td>\n",
|
||
|
" <td>9,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>20</th>\n",
|
||
|
" <td>OUSSENI Saandati</td>\n",
|
||
|
" <td>18 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>21</th>\n",
|
||
|
" <td>SAID Amina</td>\n",
|
||
|
" <td>19 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>22</th>\n",
|
||
|
" <td>SAID Charfia</td>\n",
|
||
|
" <td>14 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>23</th>\n",
|
||
|
" <td>SAID Hachimia</td>\n",
|
||
|
" <td>8 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>24</th>\n",
|
||
|
" <td>SAID Nasra</td>\n",
|
||
|
" <td>19,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>25</th>\n",
|
||
|
" <td>SALIM Laïlouna</td>\n",
|
||
|
" <td>14 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>26</th>\n",
|
||
|
" <td>SIDI Yansilouna</td>\n",
|
||
|
" <td>12,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>27</th>\n",
|
||
|
" <td>SOILIHI Nadjdat</td>\n",
|
||
|
" <td>4,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Eleve Mark_barem\n",
|
||
|
"0 ABDILLAH Nourouzamane 11 / 20\n",
|
||
|
"1 ABDOU Mouhamadi 16 / 20\n",
|
||
|
"2 ABOUDOU Amayoune 19 / 20\n",
|
||
|
"3 AHAMED Tansia 14 / 20\n",
|
||
|
"4 AHMED Yancoub 15 / 20\n",
|
||
|
"5 ALI Cynthia 19 / 20\n",
|
||
|
"6 ANDRIAMAHAZAKA Néni Erika 19 / 20\n",
|
||
|
"7 ATTOUMANI Antibati 10 / 20\n",
|
||
|
"8 ATTOUMANI OUSSENI Jeannette 19 / 20\n",
|
||
|
"9 CHAMASSE Nadjima 18 / 20\n",
|
||
|
"10 CHARMANE RAFION Elda 18 / 20\n",
|
||
|
"11 DAOU Naël 11,5 / 20\n",
|
||
|
"12 DARMINE Sadya 10 / 20\n",
|
||
|
"13 HAMIDOU Fayssoil 11 / 20\n",
|
||
|
"14 HOUMADI Mouhouyi 16,5 / 20\n",
|
||
|
"15 MADI SAID Zaynati 15 / 20\n",
|
||
|
"16 MALIDE Elza 11 / 20\n",
|
||
|
"17 MOUHAMADI ANDILI Issina 18 / 20\n",
|
||
|
"18 MOUSSA Samra 15 / 20\n",
|
||
|
"19 OUSSENI Kaïssoune 9,5 / 20\n",
|
||
|
"20 OUSSENI Saandati 18 / 20\n",
|
||
|
"21 SAID Amina 19 / 20\n",
|
||
|
"22 SAID Charfia 14 / 20\n",
|
||
|
"23 SAID Hachimia 8 / 20\n",
|
||
|
"24 SAID Nasra 19,5 / 20\n",
|
||
|
"25 SALIM Laïlouna 14 / 20\n",
|
||
|
"26 SIDI Yansilouna 12,5 / 20\n",
|
||
|
"27 SOILIHI Nadjdat 4,5 / 20"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 39,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"CMT2_eval[[\"Eleve\", \"Mark_barem\"]]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 8,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 50,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"## DM1"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 40,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"dm1_flat = flat_T2[flat_T2[\"Nom\"]==\"DM1\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 41,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:485: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Mark\"] = compute_marks(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:486: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Level\"] = compute_level(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:487: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Latex_rep\"] = compute_latex_rep(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:488: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Normalized\"] = compute_normalized(df)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"dm1_quest, dm1_exo, dm1_eval = digest_flat_df(dm1_flat)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 42,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Eleve</th>\n",
|
||
|
" <th>Mark_barem</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>ABDILLAH Nourouzamane</td>\n",
|
||
|
" <td>4 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>ABDOU Mouhamadi</td>\n",
|
||
|
" <td>3 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>ABOUDOU Amayoune</td>\n",
|
||
|
" <td>3 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>AHAMED Tansia</td>\n",
|
||
|
" <td>3 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>AHMED Yancoub</td>\n",
|
||
|
" <td>3 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>5</th>\n",
|
||
|
" <td>ALI Cynthia</td>\n",
|
||
|
" <td>4 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>6</th>\n",
|
||
|
" <td>ANDRIAMAHAZAKA Néni Erika</td>\n",
|
||
|
" <td>3 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>7</th>\n",
|
||
|
" <td>ATTOUMANI Antibati</td>\n",
|
||
|
" <td>0 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>8</th>\n",
|
||
|
" <td>ATTOUMANI OUSSENI Jeannette</td>\n",
|
||
|
" <td>3 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>9</th>\n",
|
||
|
" <td>CHAMASSE Nadjima</td>\n",
|
||
|
" <td>3 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>10</th>\n",
|
||
|
" <td>CHARMANE RAFION Elda</td>\n",
|
||
|
" <td>3 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>11</th>\n",
|
||
|
" <td>DAOU Naël</td>\n",
|
||
|
" <td>2,5 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>12</th>\n",
|
||
|
" <td>DARMINE Sadya</td>\n",
|
||
|
" <td>3 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>13</th>\n",
|
||
|
" <td>HAMIDOU Fayssoil</td>\n",
|
||
|
" <td>1,5 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>14</th>\n",
|
||
|
" <td>HOUMADI Mouhouyi</td>\n",
|
||
|
" <td>0 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>15</th>\n",
|
||
|
" <td>MADI SAID Zaynati</td>\n",
|
||
|
" <td>4 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>16</th>\n",
|
||
|
" <td>MALIDE Elza</td>\n",
|
||
|
" <td>4 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>17</th>\n",
|
||
|
" <td>MOUHAMADI ANDILI Issina</td>\n",
|
||
|
" <td>2 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>18</th>\n",
|
||
|
" <td>MOUSSA Samra</td>\n",
|
||
|
" <td>2 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>19</th>\n",
|
||
|
" <td>OUSSENI Kaïssoune</td>\n",
|
||
|
" <td>0 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>20</th>\n",
|
||
|
" <td>OUSSENI Saandati</td>\n",
|
||
|
" <td>4 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>21</th>\n",
|
||
|
" <td>SAID Amina</td>\n",
|
||
|
" <td>0 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>22</th>\n",
|
||
|
" <td>SAID Charfia</td>\n",
|
||
|
" <td>4 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>23</th>\n",
|
||
|
" <td>SAID Hachimia</td>\n",
|
||
|
" <td>4 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>24</th>\n",
|
||
|
" <td>SAID Nasra</td>\n",
|
||
|
" <td>4 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>25</th>\n",
|
||
|
" <td>SALIM Laïlouna</td>\n",
|
||
|
" <td>0 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>26</th>\n",
|
||
|
" <td>SIDI Yansilouna</td>\n",
|
||
|
" <td>0 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>27</th>\n",
|
||
|
" <td>SOILIHI Nadjdat</td>\n",
|
||
|
" <td>0 / 5</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Eleve Mark_barem\n",
|
||
|
"0 ABDILLAH Nourouzamane 4 / 5\n",
|
||
|
"1 ABDOU Mouhamadi 3 / 5\n",
|
||
|
"2 ABOUDOU Amayoune 3 / 5\n",
|
||
|
"3 AHAMED Tansia 3 / 5\n",
|
||
|
"4 AHMED Yancoub 3 / 5\n",
|
||
|
"5 ALI Cynthia 4 / 5\n",
|
||
|
"6 ANDRIAMAHAZAKA Néni Erika 3 / 5\n",
|
||
|
"7 ATTOUMANI Antibati 0 / 5\n",
|
||
|
"8 ATTOUMANI OUSSENI Jeannette 3 / 5\n",
|
||
|
"9 CHAMASSE Nadjima 3 / 5\n",
|
||
|
"10 CHARMANE RAFION Elda 3 / 5\n",
|
||
|
"11 DAOU Naël 2,5 / 5\n",
|
||
|
"12 DARMINE Sadya 3 / 5\n",
|
||
|
"13 HAMIDOU Fayssoil 1,5 / 5\n",
|
||
|
"14 HOUMADI Mouhouyi 0 / 5\n",
|
||
|
"15 MADI SAID Zaynati 4 / 5\n",
|
||
|
"16 MALIDE Elza 4 / 5\n",
|
||
|
"17 MOUHAMADI ANDILI Issina 2 / 5\n",
|
||
|
"18 MOUSSA Samra 2 / 5\n",
|
||
|
"19 OUSSENI Kaïssoune 0 / 5\n",
|
||
|
"20 OUSSENI Saandati 4 / 5\n",
|
||
|
"21 SAID Amina 0 / 5\n",
|
||
|
"22 SAID Charfia 4 / 5\n",
|
||
|
"23 SAID Hachimia 4 / 5\n",
|
||
|
"24 SAID Nasra 4 / 5\n",
|
||
|
"25 SALIM Laïlouna 0 / 5\n",
|
||
|
"26 SIDI Yansilouna 0 / 5\n",
|
||
|
"27 SOILIHI Nadjdat 0 / 5"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 42,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"dm1_eval[[\"Eleve\", \"Mark_barem\"]]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 0,
|
||
|
"height": 4,
|
||
|
"hidden": false,
|
||
|
"row": 54,
|
||
|
"width": 4
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"## Bilan du 2e trimestre"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 43,
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"col": 0,
|
||
|
"height": 11,
|
||
|
"hidden": false,
|
||
|
"row": 58,
|
||
|
"width": 11
|
||
|
},
|
||
|
"report_default": {
|
||
|
"hidden": false
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Bareme</th>\n",
|
||
|
" <th>Commentaire</th>\n",
|
||
|
" <th>Competence</th>\n",
|
||
|
" <th>Date</th>\n",
|
||
|
" <th>Domaine</th>\n",
|
||
|
" <th>Eleve</th>\n",
|
||
|
" <th>Exercice</th>\n",
|
||
|
" <th>Niveau</th>\n",
|
||
|
" <th>Nom</th>\n",
|
||
|
" <th>Note</th>\n",
|
||
|
" <th>Question</th>\n",
|
||
|
" <th>Trimestre</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1080</th>\n",
|
||
|
" <td>1.5</td>\n",
|
||
|
" <td>Calculs à trou</td>\n",
|
||
|
" <td>Cal</td>\n",
|
||
|
" <td>2016-12-02 00:00:00</td>\n",
|
||
|
" <td>Ega</td>\n",
|
||
|
" <td>ABDILLAH Nourouzamane</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>DS4</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" <td>1à3</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1081</th>\n",
|
||
|
" <td>1.5</td>\n",
|
||
|
" <td>Calculs à trou</td>\n",
|
||
|
" <td>Cal</td>\n",
|
||
|
" <td>2016-12-02 00:00:00</td>\n",
|
||
|
" <td>Ega</td>\n",
|
||
|
" <td>ABDOU Mohamed</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>DS4</td>\n",
|
||
|
" <td>NaN</td>\n",
|
||
|
" <td>1à3</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1082</th>\n",
|
||
|
" <td>1.5</td>\n",
|
||
|
" <td>Calculs à trou</td>\n",
|
||
|
" <td>Cal</td>\n",
|
||
|
" <td>2016-12-02 00:00:00</td>\n",
|
||
|
" <td>Ega</td>\n",
|
||
|
" <td>ABDOU Mouhamadi</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>DS4</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>1à3</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1083</th>\n",
|
||
|
" <td>1.5</td>\n",
|
||
|
" <td>Calculs à trou</td>\n",
|
||
|
" <td>Cal</td>\n",
|
||
|
" <td>2016-12-02 00:00:00</td>\n",
|
||
|
" <td>Ega</td>\n",
|
||
|
" <td>ABOUDOU Amayoune</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>DS4</td>\n",
|
||
|
" <td>3</td>\n",
|
||
|
" <td>1à3</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1084</th>\n",
|
||
|
" <td>1.5</td>\n",
|
||
|
" <td>Calculs à trou</td>\n",
|
||
|
" <td>Cal</td>\n",
|
||
|
" <td>2016-12-02 00:00:00</td>\n",
|
||
|
" <td>Ega</td>\n",
|
||
|
" <td>AHAMED Tansia</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>DS4</td>\n",
|
||
|
" <td>1</td>\n",
|
||
|
" <td>1à3</td>\n",
|
||
|
" <td>2</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Bareme Commentaire Competence Date Domaine \\\n",
|
||
|
"1080 1.5 Calculs à trou Cal 2016-12-02 00:00:00 Ega \n",
|
||
|
"1081 1.5 Calculs à trou Cal 2016-12-02 00:00:00 Ega \n",
|
||
|
"1082 1.5 Calculs à trou Cal 2016-12-02 00:00:00 Ega \n",
|
||
|
"1083 1.5 Calculs à trou Cal 2016-12-02 00:00:00 Ega \n",
|
||
|
"1084 1.5 Calculs à trou Cal 2016-12-02 00:00:00 Ega \n",
|
||
|
"\n",
|
||
|
" Eleve Exercice Niveau Nom Note Question Trimestre \n",
|
||
|
"1080 ABDILLAH Nourouzamane 1 1 DS4 2 1à3 2 \n",
|
||
|
"1081 ABDOU Mohamed 1 1 DS4 NaN 1à3 2 \n",
|
||
|
"1082 ABDOU Mouhamadi 1 1 DS4 3 1à3 2 \n",
|
||
|
"1083 ABOUDOU Amayoune 1 1 DS4 3 1à3 2 \n",
|
||
|
"1084 AHAMED Tansia 1 1 DS4 1 1à3 2 "
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 43,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"flat_T2.head()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 44,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"not_student_info = [\"Bareme\", \"Commentaire\", \"Competence\", \"Date\", \"Domaine\", \"Exercice\", \"Niveau\", \"Nom\", \"Question\", \"Trimestre\"]\n",
|
||
|
"T2_uniq_quest = quest_T2[not_student_info].drop_duplicates()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Nombre d'évaluations par compétences"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 45,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def my_autopct(values):\n",
|
||
|
" def my_autopct(pct):\n",
|
||
|
" total = sum(values)\n",
|
||
|
" val = int(round(pct*total/100.0))\n",
|
||
|
" return f\"{val}\"\n",
|
||
|
" #return '{p:.2f}% ({v:d})'.format(p=pct,v=val)\n",
|
||
|
" return my_autopct\n",
|
||
|
"\n",
|
||
|
"def pivot_table_to_pie(pv):\n",
|
||
|
" nbr_pies = len(pv.columns)\n",
|
||
|
" nbr_cols = min(3, nbr_pies)\n",
|
||
|
" nbr_rows = max(nbr_pies % nbr_cols,1)\n",
|
||
|
" f, axs = plt.subplots(nbr_rows, nbr_cols, figsize = (4*nbr_cols,4*nbr_rows))\n",
|
||
|
" for (c, ax) in zip(pv, axs.flatten()):\n",
|
||
|
" datas = pv[c]\n",
|
||
|
" explode = [0.1]*len(datas)\n",
|
||
|
" pv[c].plot(kind=\"pie\",\n",
|
||
|
" ax=ax,\n",
|
||
|
" use_index = False,\n",
|
||
|
" title = f\"{c} (total={datas.sum()})\",\n",
|
||
|
" legend = False,\n",
|
||
|
" autopct=my_autopct(datas),\n",
|
||
|
" explode = explode,\n",
|
||
|
" )\n",
|
||
|
" ax.set_ylabel(\"\")\n",
|
||
|
" for i in range(nbr_pies//nbr_cols, nbr_cols*nbr_rows):\n",
|
||
|
" axs.flat[i].axis(\"off\")\n",
|
||
|
" return (f, axs)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 46,
|
||
|
"metadata": {
|
||
|
"scrolled": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"comp_eff_pts = pd.pivot_table(T2_uniq_quest,\n",
|
||
|
" index = \"Competence\",\n",
|
||
|
" #columns = \"Level\",\n",
|
||
|
" values = \"Bareme\",\n",
|
||
|
" aggfunc=[len,np.sum],\n",
|
||
|
" fill_value=0)\n",
|
||
|
"#comp_eff_pts.columns = [\"Effectifs\", \"Points\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Effectifs des évaluations et points attribués"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 47,
|
||
|
"metadata": {
|
||
|
"scrolled": true
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"(<matplotlib.figure.Figure at 0x7f982acef400>,\n",
|
||
|
" array([<matplotlib.axes._subplots.AxesSubplot object at 0x7f982acefcf8>,\n",
|
||
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x7f982acb28d0>], dtype=object))"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 47,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/.virtualenvs/enseignement/lib/python3.6/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans\n",
|
||
|
" (prop.get_family(), self.defaultFamily[fontext]))\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAD4CAYAAABCHIdcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFXbBvB7Zlt6QhqphFCSECCUUKX3GikCRgVBVERF\nBAEVUT7QV0BRVKpIl94CoUlHei8SAoEAISG99+0z3x8LC0t6stmz5fyuy+t9M9mdvRM2+8w5cwrD\n8zwPiqIoiqIMgiUdgKIoiqIsCS28FEVRFGVAtPBSFEVRlAHRwktRFEVRBkQLL0VRFEUZEC28FEVR\nFGVAtPBSFEVRlAHRwvuSr7/+GuPGjTPY60VFRaFz584oLi422Gu+asmSJejTpw+x138uKSkJ7du3\nR3p6OukoFFWmiRMnYs2aNUQzBAYGIjIykmiG2sRxHAYOHIiTJ0+SjlJraOElaP78+fjggw9gY2MD\nAIiMjERgYGC1zhUcHIyIiAh9xquyjIwMdOrUCYGBgUhNTdUeX7JkCQIDA0v97/bt2wAAb29vDBgw\nAH/88Qep+BRVrosXLyIqKgqjR4/WHuvTpw+WLFlS5XMtX74cPXv21Ge8Stu+fTvGjh2L9u3bIzAw\nENeuXSvxmDVr1iAsLAytW7dGq1atMHToUOzZs0fnMRzHYenSpejTpw9CQkLQvXt3/O9//6uwIdGz\nZ88SnwNvvfWW9vssy2LSpEn46aefwHGcfn5oI0MLLyG3b99GVFQUhg0bRjqKXnAch+nTp6N58+Yl\nvjd+/HicO3dO579+/frBz89P5/EjR47Evn37kJ2dbcjoFFUp69atw5AhQyCRSEhHqRGpVIoOHTpg\n+vTpZT7G29sb06dPx+7du7F3714MGTIEs2bNwvHjx7WPWbt2LdauXYvp06fj0KFD+OGHH3D48GEs\nWLCgwgwffvihzufBihUrdL7fu3dv5Obm4vTp09X/QY0YLbwVOHjwIIYMGYLmzZujZ8+emD9/vs4V\n3ZgxYzBr1iwsW7YMnTp1Qrt27fDll1+iqKio3PPu378fbdu2haOjIwDg8uXL+PLLLwFAexX49ddf\nAwCUSiV++eUXdOnSBc2aNcPAgQOxf/9+7bl69uwJtVqNmTNnap8LAHl5eZg+fTq6d++OkJAQ9OvX\nD2vXrkVtrBK6fPlyiESiUrvqbW1t4ebmpv3PysoKZ86cwahRo8AwjPZxTZs2haurK44cOaL3fJTp\nuXbtGsLDw9GqVSu0atUKr7/+Os6ePQsASExMLLW19moLNDAwEBs3bsSUKVPQsmVLdO/eHYcPH0ZB\nQQGmTZuGVq1aoVevXhW+53JycnD27Fn07t1be2zMmDFISEjA0qVLtX93iYmJAIBbt27hnXfeQUhI\nCNq2bYtp06YhKysLABAREYE//vgDSUlJ2uc9z7x//36MHDkSoaGhaN++PSZMmIC4uLia/zJfMm7c\nOHz88cfo2LFjmY/p378/unXrBn9/f/j5+eG9995DQEAArly5on3MjRs30KlTJ/Tr1w8+Pj7o0qUL\nBg8erO3FKo+NjY3OZ4KTk5PO98ViMbp37459+/ZV/wc1YkLSAYxZREQE5s+fj1mzZiE0NBSpqan4\n/vvvkZ2djYULF2ofd+TIEQwfPhx///03UlJS8MUXX8DLywtTpkwp89xXr15Ft27dtF+3atUKs2fP\nxvfff49z584BAKysrAAAixYtQkREBObMmYOgoCAcOXIEM2bMgKurKzp27Ihdu3ahc+fO+OqrrzBw\n4EDtORUKBQICAvDee+/BwcEBN27cwJw5c+Do6Ig33nij1FzXrl3Dhx9+WO7vJTQ0FKtXr9Z+fenS\nJezYsQN79uzBw4cPy30uAOzduxcqlQrDhw8v8b2QkBBcvnxZp+uJsjwqlQqffPIJhg0bpm1BxcbG\nwtrausrn+vPPPzF9+nRMnToV69atw5dffol27dph4MCBmDx5Mv7++2989dVXaNeuHerUqVPqOa5f\nvw6GYdC0aVPtsSVLlmD48OHo168fxo8fDwBwdnZGRkYGxo8fjx49emD27NkoKCjA3LlzMXnyZGze\nvBkDBw7E48ePsX//fuzatQsAtLebFAoFPv74YzRq1AiFhYVYvHgxPvroIxw4cABisbjUbB988AGu\nX79e7u9g1apVaNOmTZV/d4CmN+vcuXOIi4vDZ599pj0eGhqKtWvXIiYmBkFBQXj69ClOnz6Nvn37\nVnjOzZs3Y8OGDdrPsE8//bTE7z4kJATLli2rVmZjRwtvOZYuXYovvvgCQ4cOBQD4+vpi9uzZGD16\nNL799ltta9XLywvffPMNAKBhw4YYMGAALl68WG7hTUxMRN26dbVfi8Vi2NnZAQDc3Ny0x6VSKTZu\n3IiZM2diwIABADQDPKKiorBixQp07NgRzs7OAAB7e3ud57q5uWHChAnar319fREVFYUDBw6UWXib\nNWuGvXv3lvt7eX5BAACZmZmYMWMGfvrpJ7i4uFSq8G7fvh19+/bV5n6Zh4dHqfecKMtSVFSEvLw8\n9OzZE/Xr1wcA7f9W1cCBA7W3dCZPnoytW7fCz89Pe+E3efJkbNq0Cbdu3UKPHj1KPUdiYiKcnJx0\nupmdnJwgEAi0rbfnNm/eDDs7O8yfP19bLBcuXIghQ4bg6tWraNu2LWxsbCAQCHSeB6DE3+WCBQvQ\nvn17REVFITQ0tNRsP/74I2QyWbm/g5c/ayrr/v37CA8Ph1wuh1AoxOzZs9GrVy/t98ePHw+5XI7h\nw4eDYRioVCqMGjWq3M89ABg9ejSCgoLg4uKCx48f4/fff8fZs2cRGRmp89ni4eGBrKwsFBcXay9M\nzAUtvGXIzs5GUlISFixYgJ9//ll7/Hk3bXx8PEJCQgAAQUFBOs91d3fXtlrLIpPJKnWvKD4+Hkql\nEm3bttU53rZtW/z111/lPpfjOKxevRoHDx5EamoqFAoFlEolvL29y3yOlZUV/Pz8Ksz13PTp0zF0\n6FC89tprlXr89evXERsbi++++67U70skEsjl8kq/PmWeHB0dMXLkSLz//vvo0KED2rVrh969e6NB\ngwZVPtfLf5/Ozs4QCAQ6gxgdHR0hEom0XcGlkcvllb63+/DhQ7Rs2VKnhRoUFAR7e3vExsaW+Ft+\n2b1797B06VLcu3cPOTk52uPJycllFt7qFNXK8Pf3x969e1FUVIRz585h3rx5cHNz0/bUHT58GFu2\nbMG8efPQpEkTxMXFYf78+fj9998xderUMs/7vHcA0NwKaNasGfr06YNjx44hLCxM+73nv2+ZTEYL\nr6V4Pppu1qxZaN++fYnve3h4aP+/SCTS+R7DMBXeR3V2dkZeXp4ekpZt7dq1WLlyJWbOnIng4GDY\n2tpi/fr15Q5YqGpX88WLF3HlyhXtFIvnP3fPnj0xYsQIfP/99zrP3bZtGxo0aFDq7xQAcnNzy+zu\noyzL//73P7z77rs4f/48zp8/jz/++APfffcdwsPDwbKlD09RqVQljgmFJT/mXj1W0d+ss7MzcnNz\nq/gTVI1UKsX48eMRGhqK+fPnw9XVFQAwaNAgKJXKMp9XW13NYrFYexEeHByMxMRELFu2TFt4f/rp\nJ7z77rvaHsHAwEDIZDLMmjULn3zySaUvVHx9feHq6oqkpCSd43l5eRAIBCXu/5oDWnjL4OrqCk9P\nT8TFxWHUqFF6P39wcDBiY2N1jj0v4Gq1GgKBAADg5+cHsViMq1evIiAgQPvYq1evonHjxjrPVavV\nOue7du0aunTpghEjRmiPxcfHl5urql3NLw/yAjRzk7/55husWbOmROskNzcXR44cwRdffFHmuR88\neIBWrVqV+/qU5QgICNCOU5g9ezZ27NiB8PBw7W2Kl+d9Z2VlIS0trVZyBAcHo7i4GMnJyfDy8tIe\nL+3vrlGjRoiIiIBCodC2emNiYlBQUKD9Gy7teY8ePUJ2djamTp2Khg0bAtAMYKroIr62uppfxXGc\nTm+UVCotcQEkEAjA83y
|
||
|
"text/plain": [
|
||
|
"<matplotlib.figure.Figure at 0x7f982acef400>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"pivot_table_to_pie(comp_eff_pts)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 48,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"comp_count_pv = pd.pivot_table(quest_T2,\n",
|
||
|
" index = \"Competence\",\n",
|
||
|
" columns = \"Level\",\n",
|
||
|
" values = \"Trimestre\",\n",
|
||
|
" aggfunc=len,\n",
|
||
|
" fill_value=0)\n",
|
||
|
"comp_count_pv.rename({\"Cal\": \"Calculer\",\n",
|
||
|
" \"Com\": \"Communiquer\",\n",
|
||
|
" \"Mod\": \"Modéliser\",\n",
|
||
|
" \"Rai\": \"Raisonner\",\n",
|
||
|
" \"Rep\": \"Représenter\",\n",
|
||
|
" },\n",
|
||
|
" inplace = True)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Répartition des résultats des évaluations par compétences"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 49,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/.virtualenvs/enseignement/lib/python3.6/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans\n",
|
||
|
" (prop.get_family(), self.defaultFamily[fontext]))\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArUAAAHjCAYAAAA9n+c2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdcU9f7xz8JCXvIkD1UpgoI7r33QMXROrCt2mpr6/w5\nqtaqta76da9WxUHdC/co7gkq4sDBEJC9Z8jO/f1BSY0kgYSEJHDer1dfbe89OfdJuOee5z7n8zyH\nRlEUBQKBQCAQCAQCQYeha9oAAoFAIBAIBAKhthCnlkAgEAgEAoGg8xCnlkAgEAgEAoGg8xCnlkAg\nEAgEAoGg8xCnlkAgEAgEAoGg8xCnlkAgEAgEgtp5/vw59u3bB4FAoGlTCPUU4tQSCIR6T+/evbFz\n505Nm1Ej9u/fj2nTpmnUhpCQECxZskSjNtSU58+fo2fPnuBwOJo2pcFz5swZtGjRQuq59PR0zJw5\nEz4+PmAwGOLj27ZtQ79+/WrUR12xatUqrFy5UqM2aMsz688//8RPP/2kaTNqTL10atVxM9TFQ54M\nJMW4ePEiRo0aBVJquXoKCwuxfv16DBgwAH5+fujUqRMmTJiA8PDwBhE1OXXqFL7++mtNm1EtRUVF\n2LFjB2bNmiU+tmTJEoSEhCjc19OnT+Ht7Y20tDRVmlgjnjx5gu+//x69evWCt7e31GdKfHw8Zs6c\nif79+8PHx0fq8zUiIgLffvstunTpglatWmHIkCE4ePCgxJgPDAyEp6cnQkND1fqddJlFixbB29sb\nP/74Y5VzERER8Pb2VqsjyeVyMWvWLCxZsgRdunSR23bw4MG4e/eu2mypjg8fPuD06dP4/vvvxce+\n/vprLFq0SOG+zp07B29vb1WaVyMEAgE2btyIESNGIDAwEB06dMCUKVPw4sULiXYikQjbt29Hv379\n4O/vj549e2LVqlUoLy8Xt5k0aRKePHmCp0+f1vXXUAqtcmob8sRbHwZSJenp6Zg3bx46dOgAPz8/\nDBgwADdv3hSfDw8PR3BwMNq1awd/f38MGjQI+/fvr+KcstlsbNiwAb1794avry+6deuG7du3i88P\nGTIEHA4H58+fr7PvpotkZmYiODgY169fx4wZM3D27FkcPXoUo0ePxr59+xAfH69pE9WOlZUVjI2N\nNW0GAIDH48k8d+rUKTRp0kTjkaraUl5eDg8PD8yfPx+NGzeW2obNZsPR0RE//PADfHx8pLaJiopC\nQEAAtm/fjosXL2LKlCnYuHEj9uzZI9FuzJgxOHLkCPh8vsq/S33B0dERt2/fRl5ensTx48ePw8nJ\nSa3XNjAwwKlTpzBw4MBq2xoaGsLGxkat9sgbg2FhYejevbvM+1YX4PF4eP78Ob755hucOHECYWFh\nsLGxwddff42PHz+K24WGhiI0NBT/93//h8uXL+O3337D1atXsXbtWnEbIyMjDB06FIcOHdLEV1EY\nrXFqG8LEW98HEgBkZ2fjiy++AFCxbHHlyhX89ttvsLe3F7extrbGDz/8gGPHjuHSpUv47rvvsGXL\nFolBIxQK8d133+Hhw4dYsWIFrl69il27dqFVq1biNjQaDaNHj8bBgwfr7gvqICtWrACPx8PZs2cR\nFBQEDw8PNGnSBCNHjsSZM2fg5uYGAODz+diwYQO6desGX19fDB48GBcuXJDoy9vbG2FhYZg9ezYC\nAgLQs2dPXL16FaWlpZg3bx4CAwPRp08fXLt2TfyZtLQ0eHt748KFC5gyZQpatWqFgQMHIioqCtnZ\n2fj2228REBCAwYMHS0QDIiMj4e3tjaysLAkbWrRogTNnzkj0ffnyZUybNg2tWrVCnz59xOcr+XwF\noqioSPwdOnfujE2bNmHhwoUS0VxpqzM7d+5E7969JY5dunQJw4cPh5+fH3r37o01a9ZIRDpCQkKw\nePFibN68GV27dkWvXr1k/q0uXLiAvn37iv9/27ZtOHXqFKKiouDt7Q1vb2/xd8vJycGcOXPQtm1b\n+Pv7IyQkBK9evRL/LhMmTAAA9OnTB97e3uJob2xsLKZOnYpOnTohMDAQo0aNUnlkrEePHpg3bx4G\nDx4MfX19qW38/f2xaNEijBgxAmZmZlLbLF68GDNmzEBgYCBcXFwQHByMMWPG4OrVq1WuV1RUhEeP\nHqn0e9Qn3Nzc0KpVK4mxkZGRgYcPHyI4OLhK+zt37iA4OBi+vr7o1KkTli9fLnFfi0QibN68WXwf\nzZ49GyUlJVX6efDgAb788kv4+/ujW7du+Pnnn1FYWCjTzs/lB2VlZfj555/RpUsX+Pr6okePHliz\nZo3EZ8LCwjBw4ED4+fmhf//+2LVrl0QgrHfv3ti0aROWL1+ODh06iMfG54hEIly6dEliDC5atAiP\nHj3C2bNnxWMwMjISQEUw6rvvvkNgYCACAwMxffp0pKSkAKh4fi1YsAAAxJ+rDFI9ePAAISEhaN++\nPdq0aYOJEyfi5cuXMn8TRTE2NkZYWBiGDx8OT09PeHl5YfXq1WAwGLhz5464XXR0NLp06YIBAwbA\n2dkZ3bp1w9ChQ6vY0rdvX9y4cQNlZWUqs1FdaI1TW9OJV5mbQSAQYPv27ejbt6844vfbb7+Jz3t7\ne+PcuXMSn6lJlJQMpKps3LgRTk5O+N///oeAgAA4Ozujffv2Eg+pbt26oW/fvnB3d4eLiwtGjhyJ\nLl26ICoqStwmPDwcsbGx2LNnD7p16wZnZ2fx3+5T+vbti9jYWCQmJqr0e9QXioqKcOfOHUyYMEGq\n48BkMsURzI0bN+LkyZNYvHgxLly4gKCgIMyfP7+Ko7B792706NED586dQ8+ePbFgwQLMmTMHXbp0\nQXh4OHr27ImFCxdWmbi2bNmCcePGITw8HO7u7pg7dy4WLlyIsWPH4uzZs/Dw8MC8efOUirb973//\nw/Dhw3H+/HkMGTIES5cuRVJSksz2S5YsQWxsLHbt2oWDBw8iPT0d//zzj8LXPXPmDJYvX45vvvkG\nly9fxrp16/Dw4UP8+uuvEu2uXLmCgoICHDhwQOYyeXFxMd6/fw9/f3/xscmTJ2Po0KEIDAzE/fv3\ncf/+fQwePBgURWHGjBn48OEDdu/ejZMnT8La2hqTJ09GQUEBHBwcxE78yZMncf/+fWzbtg1AhZMw\nePBgHDp0CGfOnEHXrl3xww8/yP29du/eLX7eyPpn9+7dCv9+ylBSUgIjIyOJYwYGBvDx8RE/IwnS\nGTt2LE6dOiVeFTt58iQ6duwIR0dHiXbv3r3D999/j7Zt2+LcuXNYu3Ytbt++LXFfh4WF4cCBA1iw\nYAHOnDmDli1bSqykAcCjR4/www8/YMiQITh//jx27NiBtLQ0/PTTTzWWjW3evBmxsbHYuXMnrl+/\njk2bNsHd3V18ftu2bQgNDcW8efNw+fJlLFmyBMePH69iS1hYGKytrXHs2LEqTnElcXFxKC4ulhiD\nS5YsQdu2bTFo0CDxGAwMDASHw8GUKVPA5XIRFhaGsLAwsFgsTJ06FTweD4GBgVi2bBkAiD9X+ZJc\nXl6OcePG4dixYzh27Bjc3NwwdepUuc7+smXLqh2D8lYtORwO+Hy+xNhp06YNoqOj8e7dOwBAamoq\n7ty5gx49ekh81t/fH0KhEM+ePZPZv7bAqL6J+qmceH/66SeZEy+TyQTw383g4+MDoVCIAwcOYOrU\nqbh27RosLS2l9r9kyRLcvXsXCxcuROvWrVFQUICYmJha2bxt2zacOXMGixcvho+PDz58+IBff/0V\nXC4Xs2fPFrcLCwvDN998g2PHjkEoFErtS9ZASk1NRePGjcUDwcLCQjyQXF1dERYWBgBYt24dpk6d\nikuXLokH0sqVK3H//n0AFcs5yv52y5YtqxKt+5wVK1YgKCgIIpEIERERGD16NObOnYtHjx7BxsYG\nQ4cOxZQpUySSAyqhKAqvXr1CdHS0hPTi+vXr8Pf3x6FDhxAeHg4Gg4FOnTph3rx5Era6uLjA2toa\nkZGREg86QgUfP36ESCS
|
||
|
"text/plain": [
|
||
|
"<matplotlib.figure.Figure at 0x7f982ac6f9b0>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"f, a = pivot_table_to_pie(comp_count_pv.T)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Trimestre 3"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## DS7"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 50,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"ds7_flat = flat[flat[\"Nom\"]==\"DS7\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 51,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:485: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Mark\"] = compute_marks(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:486: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Level\"] = compute_level(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:487: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Latex_rep\"] = compute_latex_rep(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:488: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Normalized\"] = compute_normalized(df)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds7_quest, ds7_exo, ds7_eval = digest_flat_df(ds7_flat)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 52,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"count 28.00\n",
|
||
|
"mean 6.46\n",
|
||
|
"std 1.62\n",
|
||
|
"min 4.00\n",
|
||
|
"25% 5.00\n",
|
||
|
"50% 6.50\n",
|
||
|
"75% 7.50\n",
|
||
|
"max 9.50\n",
|
||
|
"Name: Mark, dtype: float64"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 52,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds7_eval[\"Mark\"].describe()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 53,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Eleve</th>\n",
|
||
|
" <th>Mark_barem</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>ABDILLAH Nourouzamane</td>\n",
|
||
|
" <td>4 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>ABDOU Mouhamadi</td>\n",
|
||
|
" <td>7,5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>ABOUDOU Amayoune</td>\n",
|
||
|
" <td>7,5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>AHAMED Tansia</td>\n",
|
||
|
" <td>6,5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>AHMED Yancoub</td>\n",
|
||
|
" <td>6,5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>5</th>\n",
|
||
|
" <td>ALI Cynthia</td>\n",
|
||
|
" <td>5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>6</th>\n",
|
||
|
" <td>ANDRIAMAHAZAKA Néni Erika</td>\n",
|
||
|
" <td>4 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>7</th>\n",
|
||
|
" <td>ATTOUMANI Antibati</td>\n",
|
||
|
" <td>5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>8</th>\n",
|
||
|
" <td>ATTOUMANI OUSSENI Jeannette</td>\n",
|
||
|
" <td>4 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>9</th>\n",
|
||
|
" <td>CHAMASSE Nadjima</td>\n",
|
||
|
" <td>5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>10</th>\n",
|
||
|
" <td>CHARMANE RAFION Elda</td>\n",
|
||
|
" <td>6,5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>11</th>\n",
|
||
|
" <td>DAOU Naël</td>\n",
|
||
|
" <td>5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>12</th>\n",
|
||
|
" <td>DARMINE Sadya</td>\n",
|
||
|
" <td>6 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>13</th>\n",
|
||
|
" <td>HAMIDOU Fayssoil</td>\n",
|
||
|
" <td>5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>14</th>\n",
|
||
|
" <td>HOUMADI Mouhouyi</td>\n",
|
||
|
" <td>7 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>15</th>\n",
|
||
|
" <td>MADI SAID Zaynati</td>\n",
|
||
|
" <td>8,5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>16</th>\n",
|
||
|
" <td>MALIDE Elza</td>\n",
|
||
|
" <td>8 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>17</th>\n",
|
||
|
" <td>MOUHAMADI ANDILI Issina</td>\n",
|
||
|
" <td>8,5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>18</th>\n",
|
||
|
" <td>MOUSSA Samra</td>\n",
|
||
|
" <td>8,5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>19</th>\n",
|
||
|
" <td>OUSSENI Kaïssoune</td>\n",
|
||
|
" <td>5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>20</th>\n",
|
||
|
" <td>OUSSENI Saandati</td>\n",
|
||
|
" <td>7,5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>21</th>\n",
|
||
|
" <td>SAID Amina</td>\n",
|
||
|
" <td>9,5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>22</th>\n",
|
||
|
" <td>SAID Charfia</td>\n",
|
||
|
" <td>6,5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>23</th>\n",
|
||
|
" <td>SAID Hachimia</td>\n",
|
||
|
" <td>6 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>24</th>\n",
|
||
|
" <td>SAID Nasra</td>\n",
|
||
|
" <td>9,5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>25</th>\n",
|
||
|
" <td>SALIM Laïlouna</td>\n",
|
||
|
" <td>7 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>26</th>\n",
|
||
|
" <td>SIDI Yansilouna</td>\n",
|
||
|
" <td>7 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>27</th>\n",
|
||
|
" <td>SOILIHI Nadjdat</td>\n",
|
||
|
" <td>5 / 11</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Eleve Mark_barem\n",
|
||
|
"0 ABDILLAH Nourouzamane 4 / 11\n",
|
||
|
"1 ABDOU Mouhamadi 7,5 / 11\n",
|
||
|
"2 ABOUDOU Amayoune 7,5 / 11\n",
|
||
|
"3 AHAMED Tansia 6,5 / 11\n",
|
||
|
"4 AHMED Yancoub 6,5 / 11\n",
|
||
|
"5 ALI Cynthia 5 / 11\n",
|
||
|
"6 ANDRIAMAHAZAKA Néni Erika 4 / 11\n",
|
||
|
"7 ATTOUMANI Antibati 5 / 11\n",
|
||
|
"8 ATTOUMANI OUSSENI Jeannette 4 / 11\n",
|
||
|
"9 CHAMASSE Nadjima 5 / 11\n",
|
||
|
"10 CHARMANE RAFION Elda 6,5 / 11\n",
|
||
|
"11 DAOU Naël 5 / 11\n",
|
||
|
"12 DARMINE Sadya 6 / 11\n",
|
||
|
"13 HAMIDOU Fayssoil 5 / 11\n",
|
||
|
"14 HOUMADI Mouhouyi 7 / 11\n",
|
||
|
"15 MADI SAID Zaynati 8,5 / 11\n",
|
||
|
"16 MALIDE Elza 8 / 11\n",
|
||
|
"17 MOUHAMADI ANDILI Issina 8,5 / 11\n",
|
||
|
"18 MOUSSA Samra 8,5 / 11\n",
|
||
|
"19 OUSSENI Kaïssoune 5 / 11\n",
|
||
|
"20 OUSSENI Saandati 7,5 / 11\n",
|
||
|
"21 SAID Amina 9,5 / 11\n",
|
||
|
"22 SAID Charfia 6,5 / 11\n",
|
||
|
"23 SAID Hachimia 6 / 11\n",
|
||
|
"24 SAID Nasra 9,5 / 11\n",
|
||
|
"25 SALIM Laïlouna 7 / 11\n",
|
||
|
"26 SIDI Yansilouna 7 / 11\n",
|
||
|
"27 SOILIHI Nadjdat 5 / 11"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 53,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"ds7_eval[[\"Eleve\", \"Mark_barem\"]]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## CMT3"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 54,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"cmT3_flat = flat[flat[\"Nom\"]==\"CMT3\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 55,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:485: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Mark\"] = compute_marks(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:486: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Level\"] = compute_level(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:487: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Latex_rep\"] = compute_latex_rep(df)\n",
|
||
|
"/home/lafrite/scripts/Repytex/repytex/tools/df_marks_manip.py:488: SettingWithCopyWarning: \n",
|
||
|
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||
|
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||
|
"\n",
|
||
|
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
|
||
|
" df[\"Normalized\"] = compute_normalized(df)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"cmT3_quest, cmT3_exo, cmT3_eval = digest_flat_df(cmT3_flat)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 56,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"count 27.00\n",
|
||
|
"mean 20.52\n",
|
||
|
"std 3.74\n",
|
||
|
"min 12.00\n",
|
||
|
"25% 18.00\n",
|
||
|
"50% 21.00\n",
|
||
|
"75% 23.00\n",
|
||
|
"max 28.00\n",
|
||
|
"Name: Mark, dtype: float64"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 56,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"cmT3_eval[\"Mark\"].describe()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 57,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Eleve</th>\n",
|
||
|
" <th>Mark_barem</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>ABDILLAH Nourouzamane</td>\n",
|
||
|
" <td>18 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>ABOUDOU Amayoune</td>\n",
|
||
|
" <td>21 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>AHAMED Tansia</td>\n",
|
||
|
" <td>23 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>AHMED Yancoub</td>\n",
|
||
|
" <td>16 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>ALI Cynthia</td>\n",
|
||
|
" <td>21 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>5</th>\n",
|
||
|
" <td>ANDRIAMAHAZAKA Néni Erika</td>\n",
|
||
|
" <td>21 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>6</th>\n",
|
||
|
" <td>ATTOUMANI Antibati</td>\n",
|
||
|
" <td>16 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>7</th>\n",
|
||
|
" <td>ATTOUMANI OUSSENI Jeannette</td>\n",
|
||
|
" <td>21 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>8</th>\n",
|
||
|
" <td>CHAMASSE Nadjima</td>\n",
|
||
|
" <td>25 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>9</th>\n",
|
||
|
" <td>CHARMANE RAFION Elda</td>\n",
|
||
|
" <td>23 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>10</th>\n",
|
||
|
" <td>DAOU Naël</td>\n",
|
||
|
" <td>20 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>11</th>\n",
|
||
|
" <td>DARMINE Sadya</td>\n",
|
||
|
" <td>18 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>12</th>\n",
|
||
|
" <td>HAMIDOU Fayssoil</td>\n",
|
||
|
" <td>19 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>13</th>\n",
|
||
|
" <td>HOUMADI Mouhouyi</td>\n",
|
||
|
" <td>23 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>14</th>\n",
|
||
|
" <td>MADI SAID Zaynati</td>\n",
|
||
|
" <td>23 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>15</th>\n",
|
||
|
" <td>MALIDE Elza</td>\n",
|
||
|
" <td>22 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>16</th>\n",
|
||
|
" <td>MOUHAMADI ANDILI Issina</td>\n",
|
||
|
" <td>22 / 24</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>17</th>\n",
|
||
|
" <td>MOUSSA Samra</td>\n",
|
||
|
" <td>17 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>18</th>\n",
|
||
|
" <td>OUSSENI Kaïssoune</td>\n",
|
||
|
" <td>13 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>19</th>\n",
|
||
|
" <td>OUSSENI Saandati</td>\n",
|
||
|
" <td>25 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>20</th>\n",
|
||
|
" <td>SAID Amina</td>\n",
|
||
|
" <td>26 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>21</th>\n",
|
||
|
" <td>SAID Charfia</td>\n",
|
||
|
" <td>22 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>22</th>\n",
|
||
|
" <td>SAID Hachimia</td>\n",
|
||
|
" <td>18 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>23</th>\n",
|
||
|
" <td>SAID Nasra</td>\n",
|
||
|
" <td>28 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>24</th>\n",
|
||
|
" <td>SALIM Laïlouna</td>\n",
|
||
|
" <td>20 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>25</th>\n",
|
||
|
" <td>SIDI Yansilouna</td>\n",
|
||
|
" <td>21 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>26</th>\n",
|
||
|
" <td>SOILIHI Nadjdat</td>\n",
|
||
|
" <td>12 / 28</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Eleve Mark_barem\n",
|
||
|
"0 ABDILLAH Nourouzamane 18 / 28\n",
|
||
|
"1 ABOUDOU Amayoune 21 / 28\n",
|
||
|
"2 AHAMED Tansia 23 / 28\n",
|
||
|
"3 AHMED Yancoub 16 / 28\n",
|
||
|
"4 ALI Cynthia 21 / 28\n",
|
||
|
"5 ANDRIAMAHAZAKA Néni Erika 21 / 28\n",
|
||
|
"6 ATTOUMANI Antibati 16 / 28\n",
|
||
|
"7 ATTOUMANI OUSSENI Jeannette 21 / 28\n",
|
||
|
"8 CHAMASSE Nadjima 25 / 28\n",
|
||
|
"9 CHARMANE RAFION Elda 23 / 28\n",
|
||
|
"10 DAOU Naël 20 / 28\n",
|
||
|
"11 DARMINE Sadya 18 / 28\n",
|
||
|
"12 HAMIDOU Fayssoil 19 / 28\n",
|
||
|
"13 HOUMADI Mouhouyi 23 / 28\n",
|
||
|
"14 MADI SAID Zaynati 23 / 28\n",
|
||
|
"15 MALIDE Elza 22 / 28\n",
|
||
|
"16 MOUHAMADI ANDILI Issina 22 / 24\n",
|
||
|
"17 MOUSSA Samra 17 / 28\n",
|
||
|
"18 OUSSENI Kaïssoune 13 / 28\n",
|
||
|
"19 OUSSENI Saandati 25 / 28\n",
|
||
|
"20 SAID Amina 26 / 28\n",
|
||
|
"21 SAID Charfia 22 / 28\n",
|
||
|
"22 SAID Hachimia 18 / 28\n",
|
||
|
"23 SAID Nasra 28 / 28\n",
|
||
|
"24 SALIM Laïlouna 20 / 28\n",
|
||
|
"25 SIDI Yansilouna 21 / 28\n",
|
||
|
"26 SOILIHI Nadjdat 12 / 28"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 57,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"cmT3_eval[[\"Eleve\", \"Mark_barem\"]]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 58,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"CMT3_eval = tranform_scale(cmT3_eval, 20, 'prop')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 59,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"count 27.00\n",
|
||
|
"mean 14.91\n",
|
||
|
"std 2.72\n",
|
||
|
"min 9.00\n",
|
||
|
"25% 13.00\n",
|
||
|
"50% 15.00\n",
|
||
|
"75% 16.50\n",
|
||
|
"max 20.00\n",
|
||
|
"Name: Mark, dtype: float64"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 59,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"CMT3_eval[\"Mark\"].describe()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 60,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/html": [
|
||
|
"<div>\n",
|
||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||
|
" <thead>\n",
|
||
|
" <tr style=\"text-align: right;\">\n",
|
||
|
" <th></th>\n",
|
||
|
" <th>Eleve</th>\n",
|
||
|
" <th>Mark_barem</th>\n",
|
||
|
" </tr>\n",
|
||
|
" </thead>\n",
|
||
|
" <tbody>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>0</th>\n",
|
||
|
" <td>ABDILLAH Nourouzamane</td>\n",
|
||
|
" <td>13 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>1</th>\n",
|
||
|
" <td>ABOUDOU Amayoune</td>\n",
|
||
|
" <td>15 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>2</th>\n",
|
||
|
" <td>AHAMED Tansia</td>\n",
|
||
|
" <td>16,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>3</th>\n",
|
||
|
" <td>AHMED Yancoub</td>\n",
|
||
|
" <td>11,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>4</th>\n",
|
||
|
" <td>ALI Cynthia</td>\n",
|
||
|
" <td>15 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>5</th>\n",
|
||
|
" <td>ANDRIAMAHAZAKA Néni Erika</td>\n",
|
||
|
" <td>15 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>6</th>\n",
|
||
|
" <td>ATTOUMANI Antibati</td>\n",
|
||
|
" <td>11,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>7</th>\n",
|
||
|
" <td>ATTOUMANI OUSSENI Jeannette</td>\n",
|
||
|
" <td>15 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>8</th>\n",
|
||
|
" <td>CHAMASSE Nadjima</td>\n",
|
||
|
" <td>18 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>9</th>\n",
|
||
|
" <td>CHARMANE RAFION Elda</td>\n",
|
||
|
" <td>16,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>10</th>\n",
|
||
|
" <td>DAOU Naël</td>\n",
|
||
|
" <td>14,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>11</th>\n",
|
||
|
" <td>DARMINE Sadya</td>\n",
|
||
|
" <td>13 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>12</th>\n",
|
||
|
" <td>HAMIDOU Fayssoil</td>\n",
|
||
|
" <td>14 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>13</th>\n",
|
||
|
" <td>HOUMADI Mouhouyi</td>\n",
|
||
|
" <td>16,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>14</th>\n",
|
||
|
" <td>MADI SAID Zaynati</td>\n",
|
||
|
" <td>16,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>15</th>\n",
|
||
|
" <td>MALIDE Elza</td>\n",
|
||
|
" <td>16 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>16</th>\n",
|
||
|
" <td>MOUHAMADI ANDILI Issina</td>\n",
|
||
|
" <td>18,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>17</th>\n",
|
||
|
" <td>MOUSSA Samra</td>\n",
|
||
|
" <td>12,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>18</th>\n",
|
||
|
" <td>OUSSENI Kaïssoune</td>\n",
|
||
|
" <td>9,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>19</th>\n",
|
||
|
" <td>OUSSENI Saandati</td>\n",
|
||
|
" <td>18 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>20</th>\n",
|
||
|
" <td>SAID Amina</td>\n",
|
||
|
" <td>19 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>21</th>\n",
|
||
|
" <td>SAID Charfia</td>\n",
|
||
|
" <td>16 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>22</th>\n",
|
||
|
" <td>SAID Hachimia</td>\n",
|
||
|
" <td>13 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>23</th>\n",
|
||
|
" <td>SAID Nasra</td>\n",
|
||
|
" <td>20 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>24</th>\n",
|
||
|
" <td>SALIM Laïlouna</td>\n",
|
||
|
" <td>14,5 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>25</th>\n",
|
||
|
" <td>SIDI Yansilouna</td>\n",
|
||
|
" <td>15 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" <tr>\n",
|
||
|
" <th>26</th>\n",
|
||
|
" <td>SOILIHI Nadjdat</td>\n",
|
||
|
" <td>9 / 20</td>\n",
|
||
|
" </tr>\n",
|
||
|
" </tbody>\n",
|
||
|
"</table>\n",
|
||
|
"</div>"
|
||
|
],
|
||
|
"text/plain": [
|
||
|
" Eleve Mark_barem\n",
|
||
|
"0 ABDILLAH Nourouzamane 13 / 20\n",
|
||
|
"1 ABOUDOU Amayoune 15 / 20\n",
|
||
|
"2 AHAMED Tansia 16,5 / 20\n",
|
||
|
"3 AHMED Yancoub 11,5 / 20\n",
|
||
|
"4 ALI Cynthia 15 / 20\n",
|
||
|
"5 ANDRIAMAHAZAKA Néni Erika 15 / 20\n",
|
||
|
"6 ATTOUMANI Antibati 11,5 / 20\n",
|
||
|
"7 ATTOUMANI OUSSENI Jeannette 15 / 20\n",
|
||
|
"8 CHAMASSE Nadjima 18 / 20\n",
|
||
|
"9 CHARMANE RAFION Elda 16,5 / 20\n",
|
||
|
"10 DAOU Naël 14,5 / 20\n",
|
||
|
"11 DARMINE Sadya 13 / 20\n",
|
||
|
"12 HAMIDOU Fayssoil 14 / 20\n",
|
||
|
"13 HOUMADI Mouhouyi 16,5 / 20\n",
|
||
|
"14 MADI SAID Zaynati 16,5 / 20\n",
|
||
|
"15 MALIDE Elza 16 / 20\n",
|
||
|
"16 MOUHAMADI ANDILI Issina 18,5 / 20\n",
|
||
|
"17 MOUSSA Samra 12,5 / 20\n",
|
||
|
"18 OUSSENI Kaïssoune 9,5 / 20\n",
|
||
|
"19 OUSSENI Saandati 18 / 20\n",
|
||
|
"20 SAID Amina 19 / 20\n",
|
||
|
"21 SAID Charfia 16 / 20\n",
|
||
|
"22 SAID Hachimia 13 / 20\n",
|
||
|
"23 SAID Nasra 20 / 20\n",
|
||
|
"24 SALIM Laïlouna 14,5 / 20\n",
|
||
|
"25 SIDI Yansilouna 15 / 20\n",
|
||
|
"26 SOILIHI Nadjdat 9 / 20"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 60,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"CMT3_eval[[\"Eleve\", \"Mark_barem\"]]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {
|
||
|
"collapsed": true
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"extensions": {
|
||
|
"jupyter_dashboards": {
|
||
|
"activeView": "report_default",
|
||
|
"version": 1,
|
||
|
"views": {
|
||
|
"grid_default": {
|
||
|
"cellMargin": 10,
|
||
|
"defaultCellHeight": 20,
|
||
|
"maxColumns": 12,
|
||
|
"name": "grid",
|
||
|
"type": "grid"
|
||
|
},
|
||
|
"report_default": {
|
||
|
"name": "report",
|
||
|
"type": "report"
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.6.1"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 1
|
||
|
}
|