2016-2017/3e/DM/DM_16_11_14/exo_proba.tex
2017-06-16 09:49:23 +03:00

32 lines
1.2 KiB
TeX

\Block{set bBleu = randint(2,10)}
\Block{set bJaune = randint(2,10)}
\Block{set bVerte = randint(2,10)}
\Block{set bRouge = randint(2,10)}
\Block{set nbrTot = bBleu + bJaune + bVerte + bRouge}
Dans une urne, on a placé des boules colorées indiscernables au touché. Il y a \Var{bBleu} boules bleu, \Var{bJaune} boules jaunes, \Var{bVerte} boules vertes et \Var{bRouge} boules rouges.
\begin{parts}
\part Quelle est la probabilité de tirer une boule bleu?
\begin{solution}
$\dfrac{\Var{bBleu}}{\Var{nbrTot}} \approx \Var{(bBleu / nbrTot) |round(2)}$
\end{solution}
\part Quelle est la probabilté de tirer une boule jaune ou bleu?
\begin{solution}
$\dfrac{\Var{bJaune + bBleu}}{\Var{nbrTot}} \approx \Var{((bJaune + bBleu)/ nbrTot) | round(2)}$
\end{solution}
\part A-t-on plus de chance de tirer une boule verte ou une boule rouge?
\begin{solution}
Boules vertes: $\dfrac{\Var{bVerte}}{\Var{nbrTot}} \approx \Var{(bVerte / nbrTot) |round(2)}$
Boules rouges: $\dfrac{\Var{bRouge}}{\Var{nbrTot}} \approx \Var{(bRouge / nbrTot) |round(2)}$
\Block{if bVerte > bRouge}
Une boule verte
\Block{else}
Une boule rouge
\Block{endif}
\end{solution}
\end{parts}