115 lines
4.2 KiB
TeX
115 lines
4.2 KiB
TeX
\begin{parts}
|
|
\vfill
|
|
\part Faire les calculs suivants en détaillant les étapes (penser à simplifier les fractions quand c'est possible).
|
|
\begin{multicols}{4}
|
|
\begin{subparts}
|
|
\Block{set e = Expression.random("{a} / {b} + {c} / {b}", ["{b} > 1"])}
|
|
\subpart $B = \Var{e}$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
\Var{e.simplify().explain() | calculus(name = "B")}
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
\Block{set e = Expression.random("{a} / {b} + {c} / {d}", ["{b} > 1", "{d} > 1", "gcd({b},{d})==1"])}
|
|
\subpart $D = \Var{e}$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
\Var{e.simplify().explain() | calculus(name = "D")}
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
\Block{set e = Expression.random("{a} / {b} * {c}", ["{b} > 1", "{a} > 0", "{c} > 1", "{c} != {b}"])}
|
|
\subpart $E = \Var{e}$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
\Var{e.simplify().explain() | calculus(name = "E")}
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
\Block{set e = Expression.random("{a} / {b} * {c} / {d}", ["{b} > 1", "{a} > 0", "{c} > 0", "{d} > 1"])}
|
|
\subpart $F = \Var{e}$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
\Var{e.simplify().explain() | calculus(name = "F")}
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
\end{subparts}
|
|
\end{multicols}
|
|
|
|
\part Développer puis réduire les expressions suivantes
|
|
\begin{multicols}{2}
|
|
\begin{subparts}
|
|
\Block{set e = Expression.random("_*(_*x + _)")}
|
|
\subpart $A = \Var{e}$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
\Var{e.simplify().explain() | calculus(name = "A")}
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
|
|
\Block{set e = Expression.random("_*x(_*x + _)")}
|
|
\subpart $B = \Var{e}$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
\Var{e.simplify().explain() | calculus(name = "B")}
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
|
|
\Block{set e = Expression.random("_*(_*x + _) + _")}
|
|
\subpart $A = \Var{e}$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
\Var{e.simplify().explain() | calculus(name = "C")}
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
|
|
\Block{set e = Expression.random("_*x+_*x(_*x + _)+_")}
|
|
\subpart $B = \Var{e}$
|
|
\begin{solution}
|
|
\begin{eqnarray*}
|
|
\Var{e.simplify().explain() | calculus(name = "D")}
|
|
\end{eqnarray*}
|
|
\end{solution}
|
|
|
|
\end{subparts}
|
|
\end{multicols}
|
|
|
|
\part Résoudre les équations suivantes.
|
|
\begin{multicols}{4}
|
|
\begin{subparts}
|
|
\Block{set e = Equation.random("x + _ = _", val_min = 1, val_max = 100)}
|
|
\subpart $\Var{e}$
|
|
\begin{solution}
|
|
\begin{align*}
|
|
\Block{for i in e.solve()} \Var{i[0]} &= \Var{i[1]} \\ \Block{endfor}
|
|
\end{align*}
|
|
\end{solution}
|
|
|
|
\Block{set e = Equation.random("y - _ = _", val_min = 1, val_max = 100)}
|
|
\subpart $\Var{e}$
|
|
\begin{solution}
|
|
\begin{align*}
|
|
\Block{for i in e.solve()} \Var{i[0]} &= \Var{i[1]} \\ \Block{endfor}
|
|
\end{align*}
|
|
\end{solution}
|
|
|
|
\Block{set e = Equation.random("_x = _")}
|
|
\subpart $\Var{e}$
|
|
\begin{solution}
|
|
\begin{align*}
|
|
\Block{for i in e.solve()} \Var{i[0]} &= \Var{i[1]} \\ \Block{endfor}
|
|
\end{align*}
|
|
\end{solution}
|
|
|
|
\Block{set e = Equation.random("_x = _/_", val_min = 2, val_max = 20)}
|
|
\subpart $\Var{e}$
|
|
\begin{solution}
|
|
\begin{align*}
|
|
\Block{for i in e.solve()} \Var{i[0]} &= \Var{i[1]} \\ \Block{endfor}
|
|
\end{align*}
|
|
\end{solution}
|
|
|
|
\end{subparts}
|
|
\end{multicols}
|
|
|
|
\end{parts}
|
|
|