2017-2018/3ePasserelles/DM/DM_noel/exo_calculs.tex

85 lines
4.3 KiB
TeX
Raw Normal View History

2017-12-08 04:07:16 +00:00
\begin{enumerate}
\item Compléter les pointillés pour qu'il y est bien égalité.
\hspace{-1cm}
\begin{center}
\Block{set a,b,c = random_str("{a},{b},{b*c}", conditions = ["{a} != {b}", "{a} > 1", "{b}>1","{c}>1"]).split(',')}%
$\dfrac{\Var{a}}{\Var{b}} = \dfrac{\ldots}{\Var{c}}$
\hfill
\Block{set a,b,c = random_str("{a},{b},{b*c}", conditions = ["{a} != {b}", "{a} > 1", "{b}>1","{c}>1"]).split(',')}%
$\dfrac{\Var{a}}{\Var{b}} = \dfrac{\ldots}{\Var{c}}$
\hfill
\Block{set a,b,c = random_str("{a},{b},{b*c}", conditions = ["{a} != {b}", "{a} > 1", "{b}>1","{c}>1"]).split(',')}%
$\dfrac{\cdots}{\Var{c}} = \dfrac{\Var{a}}{\Var{b}}$
\hfill
\Block{set a,b,c = random_str("{a},{b},{a*c}", conditions = ["{a} != {b}", "{a} > 1", "{b}>1","{c}>1"]).split(',')}%
$\dfrac{\Var{a}}{\Var{b}} = \dfrac{\Var{c}}{\cdots}$
\end{center}
\item Calculer les quantités suivantes
\begin{multicols}{3}
\begin{enumerate}
\Block{set a, b = random_str("{a},{b*a}", val_min=2, val_max = 5).split(',')}
\item $\dfrac{1}{\Var{a}}$ de \Var{b}m
\Block{set a, b, c = random_str("{a},{b*a}, {a+1}", val_min=2, val_max = 5).split(',')}
\item $\dfrac{\Var{c}}{\Var{a}}$ de \Var{b}\euro
\Block{set a, b = random_str("{a},{b*a}", val_min=2, val_max = 10).split(',')}
\item $\dfrac{1}{\Var{a}}$ de \Var{b}élèves
\Block{set a = random_str("{a*3}", val_min=2, val_max = 10)}
\item Un tiers de \Var{a}m
\Block{set a, b = random_str("{a*10},{b*10}", val_min=2, val_max = 10).split(',')}
\item \Var{a}\% de \Var{b} \euro
\Block{set a, b = random_str("{a*10},{b*a}", val_min=2, val_max = 9).split(',')}
\item \Var{a}\% de \Var{b} \euro
\end{enumerate}
\end{multicols}
\item Faire les calculs suivants en détaillant des étapes.
\begin{multicols}{3}
\begin{enumerate}
\Block{set e = Expression.random("({a} + {b})*{c} + {d}")}
\item $\Var{e}$
\Block{set e = Expression.random("{a} * ({b} + {c}) * {d}")}
\item $\Var{e}$
\Block{set e = Expression.random("{c}({a} - {b}) + {d}")}
\item $\Var{e}$
\end{enumerate}
\end{multicols}
\item Réduire les expressions suivantes
\begin{multicols}{2}
\begin{enumerate}
\Block{set A = Expression.random("{a}x + {c} + {d}x", val_min=2, conditions = ["{a} not in [0,1]", "{d} not in [0,1]"])}
\item A = $\Var{A}$
\begin{solution}
\begin{eqnarray*}
\Var{A.simplify().explain() | calculus()}
\end{eqnarray*}
\end{solution}
\Block{set B = Expression.random("({b} - {a}) + {a}x + {c} + {d}x", val_min=2, conditions = ["{a} not in [0,1]", "{d} not in [0,1]"])}
\item B = $\Var{B}$
\begin{solution}
\begin{eqnarray*}
\Var{B.simplify().explain() | calculus()}
\end{eqnarray*}
\end{solution}
\Block{set C = Expression.random("({b} - {a}) + {a}x + {c} + {d}x", conditions = ["{a} not in [0,1]", "{d} not in [0,1]"])}
\item C = $\Var{C}$
\begin{solution}
\begin{eqnarray*}
\Var{C.simplify().explain() | calculus()}
\end{eqnarray*}
\end{solution}
\Block{set D = Expression.random("{a}x^2 + {c}x^2 + {d}x + {d} + {a}x", val_min=2, conditions = ["{a} not in [0,1]", "{d} not in [0,1]"])}
\item D = $\Var{D}$
\begin{solution}
\begin{eqnarray*}
\Var{D.simplify().explain() | calculus()}
\end{eqnarray*}
\end{solution}
\end{enumerate}
\end{multicols}
\end{enumerate}