2019-2020/TES/Suites/Limite_ArithmeticoGeo/4B_suites_AR.tex

75 lines
2.1 KiB
TeX
Raw Normal View History

2020-05-05 07:53:14 +00:00
\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\usepackage{booktabs}
\title{Limite de suite géométriques- Bilan}
\date{Décembre 2019}
\begin{document}
\section*{Suites arithméticogéométriques}
\subsection{Définition}
Une suite arithméticogéométrique est une suite qui mélange les caractéristiques d'une suite arithmétique (l'addition) et d'une géométrique (la multiplication). Elle est de la forme
\[
u_{n+1} = a\times u_n + b \mbox{ avec } a \mbox{ et } b \mbox{ deux réels}
\]
\subsection{Remarques}
\begin{itemize}
\item Vous avez construit des suites de ce type dans l'exercice sur le renouvellement des médecins.
\item Aucune connaissance théorique sur les suites arithméticogéométriques n'est exigible en terminal ES-L. Par contre, on les retrouve presque toujours en les exercices du bac. Il a quelques manipulations à connaître.
\end{itemize}
\subsection{Manipulations à connaître}
Soit $(u_n)$ une suite définie par
\[
\left\{
\begin{array}{l}
u_{n+1} = 0.9 u_n + 24 \\
u_0 = \np{60}
\end{array}
\right.
\]
On reconnaît une suite arithméticogéométrique.
Pour l'étude de cette suite, on passera par une suite annexe (qui sera toujours donnée).
\[
v_n = u_n - 240
\]
On va alors chercher à démontrer que la suite $(v_n)$ est géométrique
\begin{eqnarray*}
\frac{v_{n+1}}{v_n} &=& \frac{u_{n+1} - 240}{u_n-240} \\
&=& \frac{0.9u_n + 24 - 240}{u_n-240}\\
&=& \frac{0.9u_n - 216}{u_n-240}\\
&=& \frac{0.9\left( u_n - 240\right)}{u_n - 240} \\
&=& 0.9
\end{eqnarray*}
Donc
\[
v_{n+1} = 0.9v_n
\]
Donc la suite $(v_n)$ est géométrique de raison q=0.9. Il reste donc à connaître le premier terme $v_0$
\[
v_0 = u_0 -240 = 60 - 240 = -180
\]
On peut en déduit $v_n$ en fonction de $n$
\[
v_n = v_0\times q^n = -180\times0.9^n
\]
On en déduit donc $u_n$ (ici je l'explique d'une autre façon que Aurélie mais les deux méthodes sont correctes).
\[
v_n = u_n - 240
\]
Donc
\[
u_n = v_n + 240 = -180\times0.9^n + 240
\]
\end{document}