2020-05-05 07:53:14 +00:00
|
|
|
\documentclass[a4paper,10pt]{article}
|
|
|
|
\usepackage{myXsim}
|
|
|
|
|
|
|
|
\title{Polynômes du 3e degré - Cours}
|
|
|
|
\tribe{1ST}
|
|
|
|
\date{Avril 2020}
|
|
|
|
|
|
|
|
\pagestyle{empty}
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
2020-05-08 16:27:20 +00:00
|
|
|
\setcounter{section}{2}
|
2020-05-05 07:53:14 +00:00
|
|
|
\section{Racine cubique}
|
|
|
|
\subsection*{Définition}
|
|
|
|
|
|
|
|
L'équation
|
|
|
|
\[
|
|
|
|
x^3 = k
|
|
|
|
\]
|
|
|
|
a une unique solution appelée \textbf{racine cubique de $k$} notée
|
|
|
|
\[
|
|
|
|
\sqrt[3]{k} = k^{\frac{1}{3}}
|
|
|
|
\]
|
|
|
|
|
|
|
|
\subsubsection*{Remarque - calculatrice TI}
|
|
|
|
|
|
|
|
On trouvera la fonction $\sqrt[3]{\ldots}$ à travers la touche \calc{math}.
|
|
|
|
|
|
|
|
\subsubsection*{Exemple}
|
|
|
|
Résolution de l'équation $x^3 = 5$
|
|
|
|
|
2020-05-08 16:27:20 +00:00
|
|
|
La solution est
|
2020-05-05 07:53:14 +00:00
|
|
|
\[
|
|
|
|
x = \sqrt[3]{5} \approx 1,7
|
|
|
|
\]
|
|
|
|
Ce que l'on peut aussi écrire
|
|
|
|
\[
|
|
|
|
x = 5^{\frac{1}{3}}\approx 1,7
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
|
|
\end{document}
|
|
|
|
|
2020-05-08 16:27:20 +00:00
|
|
|
%%% Local Variables:
|
2020-05-05 07:53:14 +00:00
|
|
|
%%% mode: latex
|
|
|
|
%%% TeX-master: "master"
|
|
|
|
%%% End:
|
|
|
|
|