Import all

This commit is contained in:
2020-05-05 09:53:14 +02:00
parent 0e4c9c0fea
commit 7de4bab059
1411 changed files with 163444 additions and 0 deletions

Binary file not shown.

View File

@@ -0,0 +1,77 @@
\documentclass[12pt]{classPres}
%\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Calculer
\[
A = 2i - 4 + 5i + i^2
\]
\end{frame}
\begin{frame}{Calcul 2}
Calculer
\[
B = 2i(4i-2)
\]
\end{frame}
\begin{frame}{Calcul 3}
Mesure en \textbf{radian} de l'angle $(\vec{OI}; \vec{OA})$
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,45,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
\draw (135:1) node [above left] {A};
\draw (0,0) -- (135:1);
\draw[->, very thick, red] (0.5,0) arc (0:135:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 4}
Convertir en radian
\[
\theta = 120^{o} =
\]
\end{frame}
\begin{frame}{Calcul 5}
Valeur de $\cos (\dfrac{\pi}{6})$
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@@ -0,0 +1,76 @@
\documentclass[12pt]{classPres}
%\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Calculer
\[
A = 2i \times i - 4 + 5i + 2i^2
\]
\end{frame}
\begin{frame}{Calcul 2}
Calculer
\[
B = 5i(6i-4)
\]
\end{frame}
\begin{frame}{Calcul 3}
Mesure en \textbf{radian} de l'angle $(\vec{OI}; \vec{OA})$
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
\draw (0,0) -- (120:1) node [above left] {A};
\draw[->, very thick, red] (0.5,0) arc (0:120:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 4}
Valeur de $\cos (\dfrac{3\pi}{4})$
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 5}
Soient
\[ A (2; 5) \qquad \qquad B(-4; 3) \]
Calculer les coordonnées du vecteur
\[
\vec{AB} =
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@@ -0,0 +1,81 @@
\documentclass[12pt]{classPres}
%\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Le conjugué de
\[
z = 7i - 11
\]
\end{frame}
\begin{frame}{Calcul 2}
Calculer
\[
B = (10i+1)(6i-4)
\]
\end{frame}
\begin{frame}{Calcul 3}
Valeur de
\[
\sin(\frac{2\pi}{3})
\]
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
%\draw (0,0) -- (120:1) node [above left] {A};
%\draw[->, very thick, red] (0.5,0) arc (0:120:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 4}
Soit $||\vec{u}|| = 2$, $||\vec{v}||=5$ et l'angle $(\vec{u};\vec{v})$ qui vaut $\frac{\pi}{3}$.
Calculer
\vfill
\[
\vec{u}.\vec{v} =
\]
\vfill
\end{frame}
\begin{frame}{Calcul 5}
Soient
\[ A (2; 5) \qquad \qquad B(-4; 3) \]
Calculer les coordonnées du vecteur
\[
\vec{AB} =
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@@ -0,0 +1,88 @@
\documentclass[12pt]{classPres}
%\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Le conjugué de
\[
z = 5i+1
\]
\end{frame}
\begin{frame}{Calcul 2}
Calculer
\[
B = (3i+1)(i-2)
\]
\end{frame}
\begin{frame}{Calcul 3}
Valeur de
\[
\sin(\frac{-\pi}{3})
\]
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
%\draw (0,0) -- (120:1) node [above left] {A};
%\draw[->, very thick, red] (0.5,0) arc (0:120:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 4}
Solutions de
\[
\sin(x) = \frac{1}{2}
\]
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
%\draw (0,0) -- (120:1) node [above left] {A};
%\draw[->, very thick, red] (0.5,0) arc (0:120:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 5}
Soient
\[ A (2; 5) \qquad \qquad B(-4; 3) \]
Calculer les coordonnées du vecteur
\[
\vec{AB} =
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@@ -0,0 +1,95 @@
\documentclass[12pt]{classPres}
%\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Quelle lettre a pour affixe $z = -4i +2$?
\begin{center}
\begin{tikzpicture}[yscale=.5, xscale=.8]
\repere{-5}{5}{-5}{5}
\draw (-2, 3) node {$\times$} node[above] {$A$};
\draw (2, 3) node {$\times$} node[above] {$B$};
\draw (3, 2) node {$\times$} node[above] {$C$};
\draw (2, -4) node {$\times$} node[above] {$D$};
\draw (-3, -4) node {$\times$} node[above] {$E$};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 2}
Calculer
\[
B = (i-2)^2
\]
\end{frame}
\begin{frame}{Calcul 3}
Valeur de
\[
\sin(\frac{-2\pi}{3})
\]
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
%\draw (0,0) -- (120:1) node [above left] {A};
%\draw[->, very thick, red] (0.5,0) arc (0:120:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 4}
Solutions de
\[
\cos(x) = \frac{1}{2}
\]
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
%\draw (0,0) -- (120:1) node [above left] {A};
%\draw[->, very thick, red] (0.5,0) arc (0:120:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 5}
Soient
\[ A (2; 5) \qquad \qquad B(-4; 3) \]
Calculer les coordonnées du vecteur
\[
\vec{AB} =
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@@ -0,0 +1,95 @@
\documentclass[12pt]{classPres}
%\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Quelle est l'affixe de la lettre D?
\begin{center}
\begin{tikzpicture}[yscale=.5, xscale=.8]
\repere{-5}{5}{-5}{5}
\draw (-2, 3) node {$\times$} node[above] {$A$};
\draw (2, 3) node {$\times$} node[above] {$B$};
\draw (3, 2) node {$\times$} node[above] {$C$};
\draw (2, -4) node {$\times$} node[above] {$D$};
\draw (-3, -4) node {$\times$} node[above] {$E$};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 2}
Calculer
\[
B = (5i-2)\times(2-3i)
\]
\end{frame}
\begin{frame}{Calcul 3}
Valeur de
\[
\sin(\frac{-4\pi}{3})
\]
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
%\draw (0,0) -- (120:1) node [above left] {A};
%\draw[->, very thick, red] (0.5,0) arc (0:120:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 4}
Solutions de
\[
\sin(x) = -\frac{1}{2}
\]
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
%\draw (0,0) -- (120:1) node [above left] {A};
%\draw[->, very thick, red] (0.5,0) arc (0:120:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 5}
Soient
\[ A (2; 5) \qquad \qquad B(-4; 3) \]
Calculer les coordonnées du vecteur
\[
\vec{AB} =
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@@ -0,0 +1,86 @@
\documentclass[12pt]{classPres}
%\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Quelle est l'affixe de la lettre E?
\begin{center}
\begin{tikzpicture}[yscale=.5, xscale=.8]
\repere{-5}{5}{-5}{5}
\draw (-2, 3) node {$\times$} node[above] {$A$};
\draw (2, 3) node {$\times$} node[above] {$B$};
\draw (3, 2) node {$\times$} node[above] {$C$};
\draw (2, -4) node {$\times$} node[above] {$D$};
\draw (-3, -4) node {$\times$} node[above] {$E$};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 2}
Calculer
\[
B = \frac{2i+1}{i+1}
\]
\end{frame}
\begin{frame}{Calcul 3}
Solutions de
\[
\sin(x) = -\frac{\sqrt{3}}{2}
\]
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
%\draw (0,0) -- (120:1) node [above left] {A};
%\draw[->, very thick, red] (0.5,0) arc (0:120:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 4}
Soient
\[ \vec{u} = \vectCoord{2}{3} \qquad \qquad \vec{v} = \vectCoord{-2}{2} \]
Calculer
\[
\vec{u}.\vec{v} =
\]
\end{frame}
\begin{frame}{Calcul 5}
Soient
\[ \vec{u} = \vectCoord{-1}{3} \qquad \qquad \vec{v} = \vectCoord{-3}{-1} \]
\vfill
Est-ce que les vecteurs $\vec{u}$ et $\vec{v}$ sont orthogonaux?
\vfill
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@@ -0,0 +1,90 @@
\documentclass[12pt]{classPres}
%\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Soient
\[ \vec{u} = \vectCoord{-2}{0.5} \qquad \qquad \vec{v} = \vectCoord{6}{24} \]
\vfill
Est-ce que les vecteurs $\vec{u}$ et $\vec{v}$ sont orthogonaux?
\vfill
\end{frame}
\begin{frame}{Calcul 2}
Mesure de $BA$
\begin{center}
\begin{tikzpicture}
\draw (0, 0) node [below left] {$O$}%
-- (4, 0) node [midway, below] {$5$} node [below right] {$A$} %
-- (3, 2) node [above] {$B$}
-- cycle node [midway, above, sloped] {$2$};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 3}
Solutions de
\[
\cos(x) = -\frac{\sqrt{3}}{2}
\]
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
%\draw (0,0) -- (120:1) node [above left] {A};
%\draw[->, very thick, red] (0.5,0) arc (0:120:0.5) ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 4}
Quelle est l'affixe de la lettre D?
\begin{center}
\begin{tikzpicture}[yscale=.5, xscale=.8]
\repere{-5}{5}{-5}{5}
\draw (-2, 3) node {$\times$} node[above] {$A$};
\draw (2, 3) node {$\times$} node[above] {$B$};
\draw (3, 2) node {$\times$} node[above] {$C$};
\draw (2, -4) node {$\times$} node[above] {$D$};
\draw (-3, -4) node {$\times$} node[above] {$E$};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 5}
Calculer
\[
B = \frac{-i+2}{1+2i}
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}