Feat: QF pour les Tsti2d
This commit is contained in:
parent
611b2bf070
commit
f4eaa56dcb
BIN
Tsti2d/Questions_Flash/P5/QF_20_05_25-1.pdf
Normal file
BIN
Tsti2d/Questions_Flash/P5/QF_20_05_25-1.pdf
Normal file
Binary file not shown.
56
Tsti2d/Questions_Flash/P5/QF_20_05_25-1.tex
Normal file
56
Tsti2d/Questions_Flash/P5/QF_20_05_25-1.tex
Normal file
@ -0,0 +1,56 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
\usepackage[linesnumbered, boxed, french]{algorithm2e}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Tsti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\small \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x\rightarrow -\infty} 2x^6 + 3 =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x\rightarrow -\infty} \frac{3x^3 + 2x^2 + 1}{x + 2} =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x\rightarrow -\infty} (\ln(x) - 1)^3 =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 4}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x\rightarrow -\infty} e^{2x+1} =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
Tsti2d/Questions_Flash/P5/QF_20_05_25-2.pdf
Normal file
BIN
Tsti2d/Questions_Flash/P5/QF_20_05_25-2.pdf
Normal file
Binary file not shown.
56
Tsti2d/Questions_Flash/P5/QF_20_05_25-2.tex
Normal file
56
Tsti2d/Questions_Flash/P5/QF_20_05_25-2.tex
Normal file
@ -0,0 +1,56 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
\usepackage[linesnumbered, boxed, french]{algorithm2e}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Tsti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\small \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x\rightarrow -\infty} 2 + 3x - 6x^2 =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x\rightarrow +\infty} \frac{3x^2 + 2x^2 + 1}{-2x^2 + 2} =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x\rightarrow +\infty} (\ln(x) - 1)^3 =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 4}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x\rightarrow +\infty} e^{-4x+1} =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
Tsti2d/Questions_Flash/P5/QF_20_05_25-3.pdf
Normal file
BIN
Tsti2d/Questions_Flash/P5/QF_20_05_25-3.pdf
Normal file
Binary file not shown.
56
Tsti2d/Questions_Flash/P5/QF_20_05_25-3.tex
Normal file
56
Tsti2d/Questions_Flash/P5/QF_20_05_25-3.tex
Normal file
@ -0,0 +1,56 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
\usepackage[linesnumbered, boxed, french]{algorithm2e}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Tsti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\small \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x\rightarrow -\infty} 2 + 3x^3 - 6x^2 =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x\rightarrow -\infty} \frac{3x^2 + 1}{-2x + 2} =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x\rightarrow -\infty} (\ln(x) - 1)^2 =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 4}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x\rightarrow +\infty} -2e^{x+1} =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user