2019-2020/Tsti2d/Geometrie/Produit_scalaire/2E_deroulement.tex

147 lines
4.2 KiB
TeX

\documentclass[11pt,xcolor=table]{classPres}
\setlength\columnsep{0pt}
\title{Formules trigonométriques}
\date{Octobre 2019}
\begin{document}
\begin{frame}{Angle opposé}
\begin{minipage}{0.5\textwidth}
\begin{tikzpicture}[scale=2.3]
\cercleTrigo
\draw (0,0) -- (40:1);
\draw[->, very thick, red] (0.8,0) arc (0:40:0.8) node [midway, left] {$a$};
\pause
\draw (0,0) -- (-40:1);
\draw[->, very thick, red] (0.8,0) arc (0:-40:0.8) node [midway, left] {$-a$};
\end{tikzpicture}
\end{minipage}
\begin{minipage}{0.4\textwidth}
\begin{block}{Propriété}
Soit $a$ un angle alors
\[
\cos(-a) =
\]
\[
\sin(-a) =
\]
\end{block}
\end{minipage}
\end{frame}
\begin{frame}{Additions d'angles}
\begin{block}{Propriété}
Soit $a$ et $b$ deux angles alors
\[
\cos(a+b) = \ldots
\]
\end{block}
\begin{minipage}{0.4\textwidth}
\pause
\begin{tikzpicture}[scale=2]
\cercleTrigo
\draw (0,0) -- (40:1) node [above right] {$A$};
\draw[->, very thick, red] (0.8,0) arc (0:40:0.8) node [midway, left] {$a$};
\draw (0,0) -- (-20:1) node [below right] {$B$};
\draw[->, very thick, blue] (0.8,0) arc (0:-20:0.8) node [midway, left] {$b$};
\draw[->, very thick, blue] (0.8,0) arc (0:-20:0.8) node [midway, left] {$b$};
\pause
\end{tikzpicture}
\end{minipage}
\begin{minipage}{0.55\textwidth}
\begin{enumerate}
\item Exprimer les coordonnées de $A$ et $B$.
\item Calculer $\vec{OA}\cdot \vec{OB}$ avec les deux formules.
\item En déduire une formule pour calculer le cosinus et le sinus d'une somme de 2 angles.
\end{enumerate}
\end{minipage}
\end{frame}
\begin{frame}{Additions d'angles}
\begin{block}{Propriété}
Soit $a$ et $b$ deux angles alors
\[
\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)
\]
\[
\sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b)
\]
\end{block}
\begin{block}{Exemple}
On note que $\dfrac{7\pi}{12} = \dfrac{3\pi}{4} - \dfrac{\pi}{6}$.
Calculer
$\cos(\dfrac{7\pi}{12}) = $
\end{block}
\begin{block}{Exercices}
\begin{enumerate}
\item $\dfrac{\pi}{12} = \dfrac{\pi}{3} - \dfrac{\pi}{4}$.
Calculer $ \cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$
\item
$\cos(2x+\dfrac{\pi}{6}) = \ldots \qquad \sin(\dfrac{x}{3} - \dfrac{\pi}{4}) = \ldots$
\end{enumerate}
\end{block}
\end{frame}
\begin{frame}{Formules de duplications}
\begin{block}{Propriété}
Soit $a$ et $b$ deux angles alors
\[
\cos(2a) = \ldots
\qquad
\qquad
\qquad
\qquad
\sin(2a) = \ldots
\]
\end{block}
\pause
\begin{block}{Propriété}
Soit $a$ un angle
\[
\cos^2(a) + \sin^2(a) = 1
\]
\end{block}
\pause
\begin{block}{Propriété}
Soit $a$ et $b$ deux angles alors
\[
\cos(2a) = \ldots
\qquad
\qquad
\qquad
\qquad
\sin(2a) = \ldots
\]
\end{block}
\end{frame}
\begin{frame}{Formules de duplications}
\begin{block}{Propriété}
Soit $a$ et $b$ deux angles alors
\[
\cos^2(a) = \ldots
\]
\[
\sin^2(a) = \ldots
\]
\end{block}
\begin{block}{Exercices}
Linéariser les quantités suivantes
\begin{enumerate}
\item $\cos^2(2t+\dfrac{\pi}{6})$
\item $\sin^2(3t+\dfrac{\pi}{8})$
\end{enumerate}
\end{block}
\end{frame}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: