2020-2021/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.tex

99 lines
2.2 KiB
TeX
Raw Permalink Normal View History

\documentclass[12pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale Maths complémentaires
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
Résoudre l'inéquation suivante
\[
e^{2-3x} \leq e^{5}
\]
\end{frame}
\begin{frame}{Calcul 2}
Calculer $P(E\cap F)$
\begin{center}
\begin{tikzpicture}[xscale=2, grow=right]
\node {.}
child {node {$F$}
child {node {$E$}
edge from parent
node[below] {0.8}
}
child {node {$\overline{E}$}
edge from parent
node[above] {0.2}
}
edge from parent
node[below] {0.3}
}
child[missing] {}
child { node {$\overline{F}$}
child {node {$E$}
edge from parent
node[below] {0.9}
}
child {node {$\overline{E}$}
edge from parent
node[above] {0.1}
}
edge from parent
node[above] {0.7}
} ;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Calcul 3}
Vérifier que
\[
F(x) = (x+1)e^{-x^2} + \frac{2}{3}
\]
est une primitive de
\[
f(x) = (-2x^2 -2x + 1)e^{-x^2}
\]
\end{frame}
\begin{frame}[fragile]{Calcul 4}
Déterminer la quantité suivante
\[
\lim_{\substack{x \rightarrow 0 \\ >}} \frac{1}{x}=
\]
\begin{center}
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-5,ymax=5,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain=-5:-0.1,color=red,very thick]%
{1/ \x};
\tkzFct[domain=0.1:5,color=red,very thick]%
{1/ \x};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}