Feat: QF pour les maths complémentaires
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
e9e5989c08
commit
5ae75ff7ff
BIN
Complementaire/Questions_Flashs/P5/QF_21_05_03-1.pdf
Normal file
BIN
Complementaire/Questions_Flashs/P5/QF_21_05_03-1.pdf
Normal file
Binary file not shown.
98
Complementaire/Questions_Flashs/P5/QF_21_05_03-1.tex
Executable file
98
Complementaire/Questions_Flashs/P5/QF_21_05_03-1.tex
Executable file
@ -0,0 +1,98 @@
|
||||
\documentclass[12pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale Maths complémentaires
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
Résoudre l'inéquation suivante
|
||||
\[
|
||||
e^{2-3x} \leq e^{5}
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Calculer $P(E\cap F)$
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[xscale=2, grow=right]
|
||||
\node {.}
|
||||
child {node {$F$}
|
||||
child {node {$E$}
|
||||
edge from parent
|
||||
node[below] {0.8}
|
||||
}
|
||||
child {node {$\overline{E}$}
|
||||
edge from parent
|
||||
node[above] {0.2}
|
||||
}
|
||||
edge from parent
|
||||
node[below] {0.3}
|
||||
}
|
||||
child[missing] {}
|
||||
child { node {$\overline{F}$}
|
||||
child {node {$E$}
|
||||
edge from parent
|
||||
node[below] {0.9}
|
||||
}
|
||||
child {node {$\overline{E}$}
|
||||
edge from parent
|
||||
node[above] {0.1}
|
||||
}
|
||||
edge from parent
|
||||
node[above] {0.7}
|
||||
} ;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Vérifier que
|
||||
\[
|
||||
F(x) = (x+1)e^{-x^2} + \frac{2}{3}
|
||||
\]
|
||||
est une primitive de
|
||||
\[
|
||||
f(x) = (-2x^2 -2x + 1)e^{-x^2}
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{\substack{x \rightarrow 0 \\ >}} \frac{1}{x}=
|
||||
\]
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
|
||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||||
ymin=-5,ymax=5,ystep=1]
|
||||
\tkzGrid
|
||||
\tkzAxeXY
|
||||
\tkzFct[domain=-5:-0.1,color=red,very thick]%
|
||||
{1/ \x};
|
||||
\tkzFct[domain=0.1:5,color=red,very thick]%
|
||||
{1/ \x};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
Complementaire/Questions_Flashs/P5/QF_21_05_03-2.pdf
Normal file
BIN
Complementaire/Questions_Flashs/P5/QF_21_05_03-2.pdf
Normal file
Binary file not shown.
97
Complementaire/Questions_Flashs/P5/QF_21_05_03-2.tex
Executable file
97
Complementaire/Questions_Flashs/P5/QF_21_05_03-2.tex
Executable file
@ -0,0 +1,97 @@
|
||||
\documentclass[12pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale Maths complémentaires
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
Résoudre l'inéquation suivante
|
||||
\[
|
||||
e^{2-3x} \leq 1
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Calculer $P(E)$
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[xscale=2, grow=right]
|
||||
\node {.}
|
||||
child {node {$F$}
|
||||
child {node {$E$}
|
||||
edge from parent
|
||||
node[below] {0.8}
|
||||
}
|
||||
child {node {$\overline{E}$}
|
||||
edge from parent
|
||||
node[above] {0.2}
|
||||
}
|
||||
edge from parent
|
||||
node[below] {0.3}
|
||||
}
|
||||
child[missing] {}
|
||||
child { node {$\overline{F}$}
|
||||
child {node {$E$}
|
||||
edge from parent
|
||||
node[below] {0.9}
|
||||
}
|
||||
child {node {$\overline{E}$}
|
||||
edge from parent
|
||||
node[above] {0.1}
|
||||
}
|
||||
edge from parent
|
||||
node[above] {0.7}
|
||||
} ;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Démontrer que
|
||||
\[ F(x) = (2x+1)e^{-0.5x} + 10
|
||||
\]
|
||||
est une primitive de
|
||||
\[
|
||||
f(x) = (-x+1.5)e^{-0.5x}
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{\substack{x \rightarrow 0 \\ <}} \frac{1}{x}=
|
||||
\]
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
|
||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||||
ymin=-5,ymax=5,ystep=1]
|
||||
\tkzGrid
|
||||
\tkzAxeXY
|
||||
\tkzFct[domain=-5:-0.1,color=red,very thick]%
|
||||
{1/ \x};
|
||||
\tkzFct[domain=0.1:5,color=red,very thick]%
|
||||
{1/ \x};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user