2020-2021/Complementaire/03_Logarithme/5B_fonction_ln.tex

74 lines
2.0 KiB
TeX
Raw Normal View History

\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\author{Benjamin Bertrand}
\title{Logarithme - Cours}
\date{avril 2021}
\pagestyle{empty}
\begin{document}
\maketitle
\setcounter{section}{4}
\section{Fonction logarithme}
\begin{definition}
La \textbf{fonction logarithme} notée $\ln$ est définie sur $\R^{+*}=\intOO{0}{+\infty}$ par $\ln :x \mapsto ln(x)$.
\begin{minipage}{0.5\textwidth}
\begin{itemize}
\item Elle est continue et dérivable sur $\R^{+*}$
\item Elle est négative sur $\intOO{0}{1}$
\item Elle est positive sur $\intOO{1}{+\infty}$
\item $\ln(1) = 0$ et $\ln(e) = 1$
\end{itemize}
\begin{tikzpicture}
\tkzTabInit[lgt=2,espcl=5]{$x$/1,$f(x)$/2}%
{$0$, $+\infty$}%
\tkzTabVar{D-/$-\infty$, +/$+\infty$}%
\end{tikzpicture}
\end{minipage}
\hfill
\begin{minipage}{0.4\textwidth}
\begin{tikzpicture}[yscale=0.8, xscale=1]
\tkzInit[xmin=0,xmax=6,xstep=1,
ymin=-3,ymax=3,ystep=1]
\tkzGrid
\tkzAxeXY[up space=0.5,right space=.5]
\tkzFct[domain = 0.01:6, line width=1pt]{log(x)}
\tkzText[draw,fill = brown!20](5,-2.5){$f(x)=\ln(x)$}
\end{tikzpicture}
\end{minipage}
\end{definition}
\begin{propriete}
La dérivée de la fonction logarithme est la fonction inverse
\[
\forall x \in \intOO{0}{+\infty} \qquad \ln'(x) = \frac{1}{x}
\]
\end{propriete}
On en déduit, pour tout $x > 0$:
\begin{itemize}
\item $\ln'(x) = \dfrac{1}{x}$ et $\dfrac{1}{x} > 0$ alors la fonction logarithme est \dotfill
\item $\ln''(x) = \makebox[2cm]{\dotfill}$ et $\makebox[2cm]{\dotfill}$ alors la fonction logarithme est \dotfill
\end{itemize}
\subsection*{Exemples de calculs}
Calcul de la dérivée de $f(x) = 2x + 1 - 4\ln(x)$
\afaire{}
Calcul de la dérivée de $f(x) = (2x+1)\ln(x)$
\afaire{}
Calcul de la dérivée de $f(x) = \dfrac{2x+1}{\ln(x)}$
\afaire{}
\end{document}