87 lines
1.9 KiB
TeX
87 lines
1.9 KiB
TeX
|
\documentclass[12pt]{classPres}
|
||
|
\usepackage{tkz-fct}
|
||
|
|
||
|
\author{}
|
||
|
\title{}
|
||
|
\date{}
|
||
|
|
||
|
\begin{document}
|
||
|
\begin{frame}{Questions flashs}
|
||
|
\begin{center}
|
||
|
\vfill
|
||
|
Terminale Maths complémentaires
|
||
|
\vfill
|
||
|
30 secondes par calcul
|
||
|
\vfill
|
||
|
\tiny \jobname
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 1}
|
||
|
On note $X$ la variable aléatoire représentée par l'arbre suivant. Calculer $P(X = 0) = $
|
||
|
\begin{center}
|
||
|
\begin{tikzpicture}[xscale=2, grow=right]
|
||
|
\node {.}
|
||
|
child {node {$0$}
|
||
|
child {node {$0$}
|
||
|
edge from parent
|
||
|
node[below] {0.9}
|
||
|
}
|
||
|
child {node {$1$}
|
||
|
edge from parent
|
||
|
node[above] {0.1}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[below] {0.9}
|
||
|
}
|
||
|
child[missing] {}
|
||
|
child { node {$1$}
|
||
|
child {node {$0$}
|
||
|
edge from parent
|
||
|
node[below] {0.9}
|
||
|
}
|
||
|
child {node {$1$}
|
||
|
edge from parent
|
||
|
node[above] {0.1}
|
||
|
}
|
||
|
edge from parent
|
||
|
node[above] {0.1}
|
||
|
} ;
|
||
|
\end{tikzpicture}
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 2}
|
||
|
\vfill
|
||
|
Une quantité a diminué de 25\%.
|
||
|
\vfill
|
||
|
Quel taux doit-on appliquer pour revenir à la quantité initiale?
|
||
|
\vfill
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 3}
|
||
|
Résoudre l'inéquation
|
||
|
\[
|
||
|
-3x + 5 \leq 2 - 4x
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}[fragile]{Calcul 4}
|
||
|
\vfill
|
||
|
Construire le tableau de signe de la fonction
|
||
|
\vfill
|
||
|
\[
|
||
|
f(x) = \frac{x + 1}{(x - 8)^2}
|
||
|
\]
|
||
|
\vfill
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Fin}
|
||
|
\begin{center}
|
||
|
On retourne son papier.
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\end{document}
|