79 lines
1.6 KiB
TeX
79 lines
1.6 KiB
TeX
|
\documentclass[12pt]{classPres}
|
||
|
\usepackage{tkz-fct}
|
||
|
|
||
|
\author{}
|
||
|
\title{}
|
||
|
\date{}
|
||
|
|
||
|
\begin{document}
|
||
|
\begin{frame}{Questions flashs}
|
||
|
\begin{center}
|
||
|
\vfill
|
||
|
Terminale Maths complémentaires
|
||
|
\vfill
|
||
|
30 secondes par calcul
|
||
|
\vfill
|
||
|
\tiny \jobname
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 1}
|
||
|
Résoudre l'inéquation suivante
|
||
|
\[
|
||
|
\ln(2x+1) = 12
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 2}
|
||
|
Calculer la quantité suivante
|
||
|
\[
|
||
|
\int_3^6 2t^2 + \frac{1}{2}t \; \dt =
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 3}
|
||
|
Déterminer la quantité suivante
|
||
|
\[
|
||
|
\lim_{\substack{x \rightarrow -1 \\ >}} \frac{1}{x}=
|
||
|
\]
|
||
|
\begin{center}
|
||
|
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
|
||
|
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||
|
ymin=-5,ymax=5,ystep=1]
|
||
|
\tkzGrid
|
||
|
\tkzAxeXY
|
||
|
\tkzFct[domain=-5:-1.1,color=red,very thick]%
|
||
|
{\x/((1-\x)*(1+\x))};
|
||
|
\tkzFct[domain=-0.9:0.9,color=red,very thick]%
|
||
|
{\x/((1-\x)*(1+\x))};
|
||
|
\tkzFct[domain=1.1:5,color=red,very thick]%
|
||
|
{\x/((1-\x)*(1+\x))};
|
||
|
\end{tikzpicture}
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}[fragile]{Calcul 4}
|
||
|
\vfill
|
||
|
\textbf{Trouver la bonne forme}
|
||
|
\vfill
|
||
|
|
||
|
La fonction $f(x) = \ln(6x+1) + \ln(6x - 2) - 2\ln2$ est égale à
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item $\ln(9x^2 - 1)$
|
||
|
\item $\ln(36x^2 - 1)$
|
||
|
\item $\ln(12x - 4)$
|
||
|
\end{itemize}
|
||
|
|
||
|
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Fin}
|
||
|
\begin{center}
|
||
|
On retourne son papier.
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\end{document}
|