2020-2021/TST/04_Formalisation_des_suites/1B_formalisation.tex

122 lines
3.9 KiB
TeX
Raw Normal View History

\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\author{Benjamin Bertrand}
\title{Formalisation des suites - Cours}
\date{août 2020}
\pagestyle{empty}
\begin{document}
\maketitle
\begin{multicols}{2}
\begin{center}
\large{\textbf{Suite Arithmétique}}
\end{center}
\columnbreak
\begin{center}
\large{\textbf{Suite Géométrique}}
\end{center}
\end{multicols}
\subsection*{Définitions}
\begin{multicols}{2}
Une suite arithmétique modélise les situations où l'on répète une \textbf{addition}.
\begin{center}
\begin{tikzpicture}[
roundnode/.style={circle, draw=highlightbg, fill=green!5, very thick, minimum size=3mm},
]
%Nodes
\node[roundnode] (premier) {\makebox[0.5cm]{$u_0$}};
\node[roundnode] (deuxieme) [right=of premier] {\makebox[0.5cm]{$u_1$}};
\node[roundnode] (troisieme) [right=of deuxieme] {\makebox[0.5cm]{$u_2$}};
\node[roundnode] (ad) [right=of troisieme] {\makebox[0.5cm]{$u_n$}};
\node[roundnode] (der) [right=of ad] {\makebox[0.5cm]{$u_{n+1}$}};
%Lines
\path[->] (premier.east) edge [bend left] node [above] {$+r$} (deuxieme.west);
\path[->] (deuxieme.east) edge [bend left] node [above] {$+r$} (troisieme.west);
\path (troisieme.east) node [right] {....} (ad.west);
\path[->] (ad.east) edge [bend left] node [above] {$+r$} (der.west);
\end{tikzpicture}
\end{center}
La quantité ajoutée $r$ est appelée la \textbf{raison}.
\columnbreak
Une suite géométrique modélise les situations où l'on répète une \textbf{multiplication}.
\begin{center}
\begin{tikzpicture}[
roundnode/.style={circle, draw=highlightbg, fill=green!5, very thick, minimum size=3mm},
]
%Nodes
\node[roundnode] (premier) {\makebox[0.5cm]{$u_0$}};
\node[roundnode] (deuxieme) [right=of premier] {\makebox[0.5cm]{$u_1$}};
\node[roundnode] (troisieme) [right=of deuxieme] {\makebox[0.5cm]{$u_2$}};
\node[roundnode] (ad) [right=of troisieme] {\makebox[0.5cm]{$u_n$}};
\node[roundnode] (der) [right=of ad] {\makebox[0.5cm]{$u_{n+1}$}};
%Lines
\path[->] (premier.east) edge [bend left] node [above] {$\times q$} (deuxieme.west);
\path[->] (deuxieme.east) edge [bend left] node [above] {$\times q$} (troisieme.west);
\path (troisieme.east) node [right] {....} (ad.west);
\path[->] (ad.east) edge [bend left] node [above] {$\times q$} (der.west);
\end{tikzpicture}
\end{center}
La quantité par laquelle on multiplie $q$ est appelée la \textbf{raison}.
\end{multicols}
\subsection*{Formules de récurrence}
\begin{multicols}{2}
\[
u_{n+1} = u_{n} + r
\]
\columnbreak
\[
u_{n+1} = u_{n} \times q
\]
\end{multicols}
\subsection*{Formules explicite}
\begin{multicols}{2}
\[
u_{n} = u_{0} + r\times n
\]
\columnbreak
\[
u_{n} = u_{0} \times q^n
\]
\end{multicols}
\subsection*{Déterminer la nature d'une suite}
\begin{multicols}{2}
On calcule la \textbf{différence} entre deux termes consécutifs. Le résultat doit être toujours le même et ne pas dépendre de $n$.
\[
u_1 - u_0 = ...
\]
\[
u_2 - u_3 = ...
\]
Ou plus généralement,
\[
u_{n+1} - u_n = ...
\]
\columnbreak
On calcule la \textbf{quotient} entre deux termes consécutifs. Le résultat doit être toujours le même et ne pas dépendre de $n$.
\[
\frac{u_1}{u_0} = ...
\]
\[
\frac{u_2}{u_3} = ...
\]
Ou plus généralement,
\[
\frac{u_{n+1}}{u_n} = ...
\]
\end{multicols}
\end{document}