Feat: étape 1 sur la formalisation des suites

This commit is contained in:
Bertrand Benjamin 2020-10-08 09:45:37 +02:00
parent 69cf363e67
commit 4875a4cd8c
6 changed files with 141 additions and 8 deletions

Binary file not shown.

View File

@ -3,7 +3,7 @@
\author{Benjamin Bertrand}
\title{Formalisation des suites - Cours}
\date{août 2020
\date{août 2020}
\pagestyle{empty}
@ -11,4 +11,111 @@
\maketitle
\end{document}
\begin{multicols}{2}
\begin{center}
\large{\textbf{Suite Arithmétique}}
\end{center}
\columnbreak
\begin{center}
\large{\textbf{Suite Géométrique}}
\end{center}
\end{multicols}
\subsection*{Définitions}
\begin{multicols}{2}
Une suite arithmétique modélise les situations où l'on répète une \textbf{addition}.
\begin{center}
\begin{tikzpicture}[
roundnode/.style={circle, draw=highlightbg, fill=green!5, very thick, minimum size=3mm},
]
%Nodes
\node[roundnode] (premier) {\makebox[0.5cm]{$u_0$}};
\node[roundnode] (deuxieme) [right=of premier] {\makebox[0.5cm]{$u_1$}};
\node[roundnode] (troisieme) [right=of deuxieme] {\makebox[0.5cm]{$u_2$}};
\node[roundnode] (ad) [right=of troisieme] {\makebox[0.5cm]{$u_n$}};
\node[roundnode] (der) [right=of ad] {\makebox[0.5cm]{$u_{n+1}$}};
%Lines
\path[->] (premier.east) edge [bend left] node [above] {$+r$} (deuxieme.west);
\path[->] (deuxieme.east) edge [bend left] node [above] {$+r$} (troisieme.west);
\path (troisieme.east) node [right] {....} (ad.west);
\path[->] (ad.east) edge [bend left] node [above] {$+r$} (der.west);
\end{tikzpicture}
\end{center}
La quantité ajoutée $r$ est appelée la \textbf{raison}.
\columnbreak
Une suite géométrique modélise les situations où l'on répète une \textbf{multiplication}.
\begin{center}
\begin{tikzpicture}[
roundnode/.style={circle, draw=highlightbg, fill=green!5, very thick, minimum size=3mm},
]
%Nodes
\node[roundnode] (premier) {\makebox[0.5cm]{$u_0$}};
\node[roundnode] (deuxieme) [right=of premier] {\makebox[0.5cm]{$u_1$}};
\node[roundnode] (troisieme) [right=of deuxieme] {\makebox[0.5cm]{$u_2$}};
\node[roundnode] (ad) [right=of troisieme] {\makebox[0.5cm]{$u_n$}};
\node[roundnode] (der) [right=of ad] {\makebox[0.5cm]{$u_{n+1}$}};
%Lines
\path[->] (premier.east) edge [bend left] node [above] {$\times q$} (deuxieme.west);
\path[->] (deuxieme.east) edge [bend left] node [above] {$\times q$} (troisieme.west);
\path (troisieme.east) node [right] {....} (ad.west);
\path[->] (ad.east) edge [bend left] node [above] {$\times q$} (der.west);
\end{tikzpicture}
\end{center}
La quantité par laquelle on multiplie $q$ est appelée la \textbf{raison}.
\end{multicols}
\subsection*{Formules de récurrence}
\begin{multicols}{2}
\[
u_{n+1} = u_{n} + r
\]
\columnbreak
\[
u_{n+1} = u_{n} \times q
\]
\end{multicols}
\subsection*{Formules explicite}
\begin{multicols}{2}
\[
u_{n} = u_{0} + r\times n
\]
\columnbreak
\[
u_{n} = u_{0} \times q^n
\]
\end{multicols}
\subsection*{Déterminer la nature d'une suite}
\begin{multicols}{2}
On calcule la \textbf{différence} entre deux termes consécutifs. Le résultat doit être toujours le même et ne pas dépendre de $n$.
\[
u_1 - u_0 = ...
\]
\[
u_2 - u_3 = ...
\]
Ou plus généralement,
\[
u_{n+1} - u_n = ...
\]
\columnbreak
On calcule la \textbf{quotient} entre deux termes consécutifs. Le résultat doit être toujours le même et ne pas dépendre de $n$.
\[
\frac{u_1}{u_0} = ...
\]
\[
\frac{u_2}{u_3} = ...
\]
Ou plus généralement,
\[
\frac{u_{n+1}}{u_n} = ...
\]
\end{multicols}
\end{document}

View File

@ -10,9 +10,12 @@
step=1,
}
\pagestyle{empty}
\begin{document}
\input{exercises.tex}
\printcollection{banque}
\printcollection{banque}
\end{document}

View File

@ -1,20 +1,35 @@
\collectexercises{banque}
\begin{exercise}[subtitle={Continuer une suite}, step={1}, origin={Création}, topics={Formalisation des suites}, tags={Suites, Analyse}]
Ci-dessous, vous trouverez 2 début de suites de nombre.
Ci-dessous, vous trouverez des débuts de suites de nombre.
\begin{multicols}{3}
\begin{enumerate}
\item $u_0 = 10$, $u_1 = 15$, $u_2 = 22.5$
\item $v_0 = 10$, $v_1 = 15$, $v_2 = 20$
\item $w_0 = 90$, $w_1 = 108$, $w_2 = 129,6$
\item $x_0 = 90$, $x_1 = 54$, $x_2 = 32.4$
\item $y_0 = 5$, $y_1 = 2$, $y_2 = -1$
\item $z_0 = 5$, $z_1 = 25$, $z_2 = 125$
\end{enumerate}
\end{multicols}
\begin{enumerate}
\item Identifier la nature des suites $(u_n)$ et $(v_n)$
\item Calculer les 3 termes qui suivent, le 10e terme, le 100e et le 1000e terme.
\item Donner une formule générale pour calculer le n-ième terme d'une suite arithmétique.
\item Donner une formule générale pour calculer le n-ième terme d'une suite géométrique.
\item Identifier la nature et les paramètres des suites.
\item Pour chaque suites, calculer les 3 termes qui suivent, le 10e terme, le 100e et le 1000e terme.
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Placement banquaire}, step={1}, origin={??}, topics={Formalisation des suites}, tags={Suites, Analyse}]
On veut placer sur un compte en banque 1000\euro. Le banquier propose deux solutions.
\begin{enumerate}
\begin{itemize}
\item Placement à rendement fixe: La valeur du compte en banque augmente de 5\% du placement initiale chaque année.
\item Placement avec intérêt composés: la valeur du compte en banque augmente de 3\% chaque année.
\end{itemize}
\begin{enumerate}
\item Pour chaque placement, calculer le solde du compte après 1an, 2ans puis 3ans.
\item Quel placement est le plus intéressant?
\end{enumerate}
\end{exercise}

View File

@ -11,10 +11,18 @@ Formalisation des suites
Étape 1: Trouver les formules explicites
========================================
.. image:: ./1E_formalisation.pdf
:height: 200px
:alt: Calculs de termes d'une suite
Les élèves choisissent une suite géométrique et une suite arithmétique. Ils doivent calculer u100 et u1000!
Formalisation dans le cours des deux formules trouvées.
.. image:: ./1B_formalisation.pdf
:height: 200px
:alt: Toutes les formules sur les suites
Étape 2: Technique
==================