Feat: étape 1 sur la formalisation des suites
This commit is contained in:
parent
69cf363e67
commit
4875a4cd8c
BIN
TST/04_Formalisation_des_suites/1B_formalisation.pdf
Normal file
BIN
TST/04_Formalisation_des_suites/1B_formalisation.pdf
Normal file
Binary file not shown.
@ -3,7 +3,7 @@
|
||||
|
||||
\author{Benjamin Bertrand}
|
||||
\title{Formalisation des suites - Cours}
|
||||
\date{août 2020
|
||||
\date{août 2020}
|
||||
|
||||
\pagestyle{empty}
|
||||
|
||||
@ -11,4 +11,111 @@
|
||||
|
||||
\maketitle
|
||||
|
||||
\end{document}
|
||||
|
||||
\begin{multicols}{2}
|
||||
\begin{center}
|
||||
\large{\textbf{Suite Arithmétique}}
|
||||
\end{center}
|
||||
\columnbreak
|
||||
\begin{center}
|
||||
\large{\textbf{Suite Géométrique}}
|
||||
\end{center}
|
||||
\end{multicols}
|
||||
\subsection*{Définitions}
|
||||
\begin{multicols}{2}
|
||||
Une suite arithmétique modélise les situations où l'on répète une \textbf{addition}.
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
roundnode/.style={circle, draw=highlightbg, fill=green!5, very thick, minimum size=3mm},
|
||||
]
|
||||
%Nodes
|
||||
\node[roundnode] (premier) {\makebox[0.5cm]{$u_0$}};
|
||||
\node[roundnode] (deuxieme) [right=of premier] {\makebox[0.5cm]{$u_1$}};
|
||||
\node[roundnode] (troisieme) [right=of deuxieme] {\makebox[0.5cm]{$u_2$}};
|
||||
\node[roundnode] (ad) [right=of troisieme] {\makebox[0.5cm]{$u_n$}};
|
||||
\node[roundnode] (der) [right=of ad] {\makebox[0.5cm]{$u_{n+1}$}};
|
||||
|
||||
%Lines
|
||||
\path[->] (premier.east) edge [bend left] node [above] {$+r$} (deuxieme.west);
|
||||
\path[->] (deuxieme.east) edge [bend left] node [above] {$+r$} (troisieme.west);
|
||||
\path (troisieme.east) node [right] {....} (ad.west);
|
||||
\path[->] (ad.east) edge [bend left] node [above] {$+r$} (der.west);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
La quantité ajoutée $r$ est appelée la \textbf{raison}.
|
||||
|
||||
\columnbreak
|
||||
Une suite géométrique modélise les situations où l'on répète une \textbf{multiplication}.
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
roundnode/.style={circle, draw=highlightbg, fill=green!5, very thick, minimum size=3mm},
|
||||
]
|
||||
%Nodes
|
||||
\node[roundnode] (premier) {\makebox[0.5cm]{$u_0$}};
|
||||
\node[roundnode] (deuxieme) [right=of premier] {\makebox[0.5cm]{$u_1$}};
|
||||
\node[roundnode] (troisieme) [right=of deuxieme] {\makebox[0.5cm]{$u_2$}};
|
||||
\node[roundnode] (ad) [right=of troisieme] {\makebox[0.5cm]{$u_n$}};
|
||||
\node[roundnode] (der) [right=of ad] {\makebox[0.5cm]{$u_{n+1}$}};
|
||||
|
||||
%Lines
|
||||
\path[->] (premier.east) edge [bend left] node [above] {$\times q$} (deuxieme.west);
|
||||
\path[->] (deuxieme.east) edge [bend left] node [above] {$\times q$} (troisieme.west);
|
||||
\path (troisieme.east) node [right] {....} (ad.west);
|
||||
\path[->] (ad.east) edge [bend left] node [above] {$\times q$} (der.west);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
La quantité par laquelle on multiplie $q$ est appelée la \textbf{raison}.
|
||||
\end{multicols}
|
||||
|
||||
\subsection*{Formules de récurrence}
|
||||
\begin{multicols}{2}
|
||||
\[
|
||||
u_{n+1} = u_{n} + r
|
||||
\]
|
||||
\columnbreak
|
||||
\[
|
||||
u_{n+1} = u_{n} \times q
|
||||
\]
|
||||
\end{multicols}
|
||||
|
||||
\subsection*{Formules explicite}
|
||||
\begin{multicols}{2}
|
||||
\[
|
||||
u_{n} = u_{0} + r\times n
|
||||
\]
|
||||
\columnbreak
|
||||
\[
|
||||
u_{n} = u_{0} \times q^n
|
||||
\]
|
||||
\end{multicols}
|
||||
\subsection*{Déterminer la nature d'une suite}
|
||||
\begin{multicols}{2}
|
||||
On calcule la \textbf{différence} entre deux termes consécutifs. Le résultat doit être toujours le même et ne pas dépendre de $n$.
|
||||
\[
|
||||
u_1 - u_0 = ...
|
||||
\]
|
||||
\[
|
||||
u_2 - u_3 = ...
|
||||
\]
|
||||
Ou plus généralement,
|
||||
\[
|
||||
u_{n+1} - u_n = ...
|
||||
\]
|
||||
|
||||
|
||||
\columnbreak
|
||||
|
||||
On calcule la \textbf{quotient} entre deux termes consécutifs. Le résultat doit être toujours le même et ne pas dépendre de $n$.
|
||||
\[
|
||||
\frac{u_1}{u_0} = ...
|
||||
\]
|
||||
\[
|
||||
\frac{u_2}{u_3} = ...
|
||||
\]
|
||||
Ou plus généralement,
|
||||
\[
|
||||
\frac{u_{n+1}}{u_n} = ...
|
||||
\]
|
||||
\end{multicols}
|
||||
|
||||
\end{document}
|
||||
|
Binary file not shown.
@ -10,9 +10,12 @@
|
||||
step=1,
|
||||
}
|
||||
|
||||
\pagestyle{empty}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\input{exercises.tex}
|
||||
\printcollection{banque}
|
||||
\printcollection{banque}
|
||||
|
||||
\end{document}
|
||||
|
@ -1,20 +1,35 @@
|
||||
\collectexercises{banque}
|
||||
\begin{exercise}[subtitle={Continuer une suite}, step={1}, origin={Création}, topics={Formalisation des suites}, tags={Suites, Analyse}]
|
||||
Ci-dessous, vous trouverez 2 début de suites de nombre.
|
||||
Ci-dessous, vous trouverez des débuts de suites de nombre.
|
||||
\begin{multicols}{3}
|
||||
\begin{enumerate}
|
||||
\item $u_0 = 10$, $u_1 = 15$, $u_2 = 22.5$
|
||||
\item $v_0 = 10$, $v_1 = 15$, $v_2 = 20$
|
||||
|
||||
\item $w_0 = 90$, $w_1 = 108$, $w_2 = 129,6$
|
||||
\item $x_0 = 90$, $x_1 = 54$, $x_2 = 32.4$
|
||||
|
||||
\item $y_0 = 5$, $y_1 = 2$, $y_2 = -1$
|
||||
\item $z_0 = 5$, $z_1 = 25$, $z_2 = 125$
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
\begin{enumerate}
|
||||
\item Identifier la nature des suites $(u_n)$ et $(v_n)$
|
||||
\item Calculer les 3 termes qui suivent, le 10e terme, le 100e et le 1000e terme.
|
||||
\item Donner une formule générale pour calculer le n-ième terme d'une suite arithmétique.
|
||||
\item Donner une formule générale pour calculer le n-ième terme d'une suite géométrique.
|
||||
\item Identifier la nature et les paramètres des suites.
|
||||
\item Pour chaque suites, calculer les 3 termes qui suivent, le 10e terme, le 100e et le 1000e terme.
|
||||
\end{enumerate}
|
||||
\end{exercise}
|
||||
|
||||
\begin{exercise}[subtitle={Placement banquaire}, step={1}, origin={??}, topics={Formalisation des suites}, tags={Suites, Analyse}]
|
||||
On veut placer sur un compte en banque 1000\euro. Le banquier propose deux solutions.
|
||||
|
||||
\begin{enumerate}
|
||||
\begin{itemize}
|
||||
\item Placement à rendement fixe: La valeur du compte en banque augmente de 5\% du placement initiale chaque année.
|
||||
\item Placement avec intérêt composés: la valeur du compte en banque augmente de 3\% chaque année.
|
||||
\end{itemize}
|
||||
|
||||
\begin{enumerate}
|
||||
\item Pour chaque placement, calculer le solde du compte après 1an, 2ans puis 3ans.
|
||||
\item Quel placement est le plus intéressant?
|
||||
\end{enumerate}
|
||||
\end{exercise}
|
||||
|
||||
|
@ -11,10 +11,18 @@ Formalisation des suites
|
||||
Étape 1: Trouver les formules explicites
|
||||
========================================
|
||||
|
||||
.. image:: ./1E_formalisation.pdf
|
||||
:height: 200px
|
||||
:alt: Calculs de termes d'une suite
|
||||
|
||||
Les élèves choisissent une suite géométrique et une suite arithmétique. Ils doivent calculer u100 et u1000!
|
||||
|
||||
Formalisation dans le cours des deux formules trouvées.
|
||||
|
||||
.. image:: ./1B_formalisation.pdf
|
||||
:height: 200px
|
||||
:alt: Toutes les formules sur les suites
|
||||
|
||||
Étape 2: Technique
|
||||
==================
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user