53 lines
903 B
TeX
53 lines
903 B
TeX
|
\documentclass[14pt]{classPres}
|
||
|
\usepackage{tkz-fct}
|
||
|
|
||
|
\author{}
|
||
|
\title{}
|
||
|
\date{}
|
||
|
|
||
|
\begin{document}
|
||
|
\begin{frame}{Questions flashs}
|
||
|
\begin{center}
|
||
|
\vfill
|
||
|
Terminale ST \\ Spé sti2d
|
||
|
\vfill
|
||
|
30 secondes par calcul
|
||
|
\vfill
|
||
|
\tiny \jobname
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}[fragile]{Calcul 1}
|
||
|
Calculer la primitive de
|
||
|
\[
|
||
|
f(x) = \frac{1}{x^2} - 3x^2 + x^9
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 2}
|
||
|
Soit $f(x) = e^{x^2 + x}$\\
|
||
|
une primitive $F(x) = (2x + 1)e^{x^2 + x}$\\
|
||
|
Calculer la quantité suivante
|
||
|
\[
|
||
|
\int_{0}^{2} e^{x^2-x} \; dx =
|
||
|
\]
|
||
|
\vfill
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 3}
|
||
|
Dériver la fonction suivante
|
||
|
\[
|
||
|
f(x) = (x+1)e^{-4x}
|
||
|
\]
|
||
|
\vfill
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Fin}
|
||
|
\begin{center}
|
||
|
On retourne son papier.
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\end{document}
|