\begin{exercise}[subtitle={Économie d'échelle}, step={1}, origin={Création}, topics={Logarithme et equation puissance}, tags={logairthme, fonctions}]
Une usine produit des pièces pour les voitures. Produire en grande quantité permet de réduire les coûts de production, c'est \textbf{une économie d'échelle}. On modélise le prix unitaire (pour produire une pièce) par la fonction $f(x)=200\times10^{-0.1x}$ où $x$ représente la quantité produite par l'usine en une journée. Cette fonction est représenter ci-dessous.
\tkzDrawY[label={\textit{Prix unitaire (en \euro)}}, right=10pt]
\tkzLabelY
\tkzFct[domain = 0:200, line width=1pt]{200*10**(-0.1*x)}
\end{tikzpicture}
\end{center}
\begin{enumerate}
\item Vous utiliserez le graphique pour répondre aux questions suivantes
\begin{enumerate}
\item Quel est le coût unitaire pour une production de 10 pièces? Combien cela va-t-il coûter au total?
\item Combien de pièces doit-on produire pour que le coût unitaire soit environ égal à 100\euro?
\item Combien de pièces doit-on produire pour que le coût unitaire soit inférieur à 40\euro?
\item Résoudre l'inéquation $f(x)\geq80$.
\item (sti2d) Si l'on produit une infinité de prièce. Quel va être le prix unitaire de celles-ci?
\end{enumerate}
\item Vous justifierez vos réponses aux questions suivantes avec un calcul
\begin{enumerate}
\item Quel est le coût unitaire pour une production de 20 pièces? Combien cela va-t-il coûter au total?
\item Quel est le coût unitaire pour une production de 170 pièces? Combien cela va-t-il coûter au total?
\item (*) Combien de pièces doit-on produire pour que le coût unitaire soit inférieur à 10\euro?
\end{enumerate}
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Stockage de données}, step={1}, origin={Création}, topics={Logarithme et equation puissance}, tags={logairthme, fonctions}]
En informatique, un \textbf{bit} est représenté par un 1 ou un 0. C'est l'unité de base mesurer le poids d'une information numérique: 1bit peut décrire 2 choses, 2bits peut décrire 4 choses, 3bits 8 ... Si on note $x$ le nombre de bits, alors le nombre d'information différentes qu'il est possible de décrire est donné par la fonction $f(x)=2^x$.
\begin{enumerate}
\item Décrire la fonction $f(x)$. Quel type de fonction reconnaît-on?
\item Combien de d'informations peut-on décrire avec 8bits (c'est un octet)?
\item Combien de d'informations peut-on décrire avec 128bits?
\item Combien de bit doit-on utiliser pour décrire \np{1000000} information différentes?