2020-2021/TST/07_Logarithme_et_equation_puissance/1B_logarithme.tex

69 lines
2.4 KiB
TeX
Raw Normal View History

2021-01-02 09:33:35 +00:00
\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\author{Benjamin Bertrand}
\title{Logarithme et équation puissance - Cours}
\date{décembre 2020}
\pagestyle{empty}
\begin{document}
\maketitle
\section{Question de seuil}
Il est souvent pertinent de chercher la valeur de $x$ à partir de laquelle une fonction va dépasser ou passer en dessous une certaine valeur. On appelle cela un \textbf{seuil}.
Par exemple, dans l'exercice \textit{économie d'échelle}, le coût unitaire est donné par la fonction $f(x) = 200\times10^{-0.1x}$ et l'on se demande à partir de quelle quantité produite, le coût unitaire passe en dessous de 10\euro. Cette question de seuil se traduit par l'inéquation suivante
\[
f(x) = 200\times 10^{-0.1x} \leq 10
\]
Pour résoudre cette inéquation, on peut envisager 3 méthodes
\begin{itemize}
\item \textbf{Tâtonnement}: en calculant successivement des de $f(x)$ et en essayant de s'approcher de 10. Cette méthode peut être rendu efficace en utilisant la calculatrice ou le tableur.
\item \textbf{Algorithme}: en programmant un algorithme puis en faisant trouver le résultat par un ordinateur. On étudiera cette méthode plus tard.
\item \textbf{Résolution exacte}: en résolvant de manière exacte l'inéquation. Pour cela, on a besoin d'une nouvelle fonction, le logarithme.
\end{itemize}
\section{Fonction logarithme}
Il existe plusieurs fonction logarithme, nous en étudierons une seule: le logarithme décimal.
\begin{definition}{Fonction logarithme décimal}
Pour tout nombre réel $a > 0$, il existe un unique nombre $b$ tel que $10^b = a$.
\medskip
$b$ est appelé \textbf{logarithme décimal} de $a$ et est noté $\log(a)$. On peut alors noter
\[
e^b = a \qquad \equiv \qquad b = \log(a)
\]
\medskip
La fonction \textbf{logarithme décimal}, notée $\log$, est la fonction qui à tout $x$ réel \textbf{strictement positif} associe $\log(x)$
\end{definition}
\begin{propriete}
\begin{itemize}
\item Soit $a$ un nombre réel alors $\log(10^a) = a$.
\item Soit $a$ un nombre réel strictement positif alors $10^{\log(a)} = a$.
\item Valeurs particulières
\[
\log(1) = 0 \qquad \log(10) = 1
\]
\end{itemize}
\end{propriete}
\paragraph{Exemple}
Résolution de l'inéquation
\[
200\times 10^{-0.1x} \leq 10
\]
\afaire{résoudre cette inéquation}
\end{document}