Feat: première étape sur la primitive pour les sti2d
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
Bertrand Benjamin 2020-11-19 07:04:32 +01:00
parent 676fa1908e
commit 2a79189866
5 changed files with 74 additions and 6 deletions

Binary file not shown.

View File

@ -1,10 +1,74 @@
\collectexercises{banque} \collectexercises{banque}
\begin{exercise}[subtitle={<++>}, step={1}, origin={<++>}, topics={Integrale et Primitives}, tags={Intégrale, Primitive, physique}] \begin{exercise}[subtitle={Intégration}, step={1}, origin={Création}, topics={Integrale et Primitives}, tags={Intégrale, Primitive, physique}]
<++> \begin{enumerate}
\item Calculer les quantités suivantes
\begin{multicols}{3}
\begin{enumerate}
\item $\ds \int^3_1 2 \; dx$
\item $\ds \int^{10}_2 5x \; dx$
\item $\ds \int^3_1 7 \; dx$
\item $\ds \int^{10}_5 3x \; dx$
\item $\ds \int^{0.4}_{0.1} 50t \; dt$
\item $\ds \int^3_1 2t \; dt$
\end{enumerate}
\end{multicols}
\item Pour les calculs suivants mettre sous la forme $\ds \int^a_b f(x) \;dx = F(b) - F(a)$ et identifier $f(x)$ et $F(x)$.
\item Trouver une lien en $f(x)$ et $F(x)$.
\end{enumerate}
\end{exercise} \end{exercise}
\begin{solution} \begin{exercise}[subtitle={Intégration}, step={1}, origin={Création}, topics={Integrale et Primitives}, tags={Intégrale, Primitive, physique}]
<++> \begin{enumerate}
\end{solution} \item On veut calculer la quantité $\ds \int_2^3 3x^2 - 12x +14 \; dx$.
\begin{enumerate}
\item Parmi les fonctions suivantes laquel est une primitive de $f(x) = 3x^2 - 12x +14$?
\[
F(x) = 6x^3 + 4x^2 - 5x + 10 \qquad
F(x) = -3x^3 + 4x^2 - 5x + 1 \qquad
F(x) = x^3 - 6x^2 + 14x + 1 \qquad
\]
\item Calculer $\ds \int_2^3 3x^2 - 12x +14 \; dx$
\end{enumerate}
\item On veut calculer la quantité
\begin{enumerate}
\item Parmi les fonctions suivantes laquel est une primitive de $f(x) = 6x^2 + 4x -5$?
\[
F(x) = x^6 + x^2 - 5x + 1 \qquad
F(x) = 2x^3 + 2x^2 - 5x + 10 \qquad
F(x) = 6x^3 + 4x^2 - 5x \qquad
\]
\item Calculer $\ds \int_1^{10} 6x^2 + 4x - 5 \; dx$
\end{enumerate}
\item On veut calculer la quantité $\ds \int_1^{10} 12x^3 - \dfrac{1}{x^2} - 1 \; dx$
\begin{enumerate}
\item Parmi les fonctions suivantes laquel est une primitive de $f(x) = 12x^3 - \dfrac{1}{x^2} - 1$?
\[
F(x) = 3x^4 - \dfrac{1}{x} - x \qquad
F(x) = x^4 - \dfrac{1}{x^2} - x + 2 \qquad
F(x) = \dfrac{12}{4}x^4 - \dfrac{1}{2}x^2 - x \qquad
\]
\item Calculer $\ds \int_1^{10} 12x^3 - \dfrac{1}{x^2} - 1 \; dx$
\end{enumerate}
\item On veut calculer la quantité $\ds \int_{-1}^{1} \cos(x) + \sin{x} \; dx$
\begin{enumerate}
\item Parmi les fonctions suivantes laquel est une primitive de $f(x) = \cos(x) + \sin{x}$?
\[
F(x) = \sin(x) + \cos(x) + 1 \qquad
F(x) = \sin(x) - \cos(x) + 10 \qquad
F(x) = -\sin(x) + \cos(x) \qquad
F(x) = \sin(x) - \cos(x) + 5 \qquad
\]
\item Calculer $\ds \int_{-1}^{1} \cos(x) + \sin{x}\; dx$
\end{enumerate}
\end{enumerate}
\end{exercise}
\collectexercisesstop{banque} \begin{exercise}[subtitle={Retrouver les primitives}, step={1}, origin={Création}, topics={Integrale et Primitives}, tags={Intégrale, Primitive, physique}]
Retrouver les primitives des fonctions suivantes
\[
f(x) = x \qquad g(x) = 2 \qquad h(x) = x^2 \qquad i(x) = x^3 \qquad j(x) = x^n \qquad k(x) = \dfrac{1}{x^2} \qquad l(x) = \cos(x)
\]
\end{exercise}
\collectexercisesstop{banque}

View File

@ -17,6 +17,10 @@ Prévoir une vidéo sur cette recherche de lien et donc la définition de la pri
Exercices de validation de primitive et de calculs d'intégrales. Exercices de validation de primitive et de calculs d'intégrales.
.. image:: ./1E_primitive.pdf
:height: 200px
:alt: Exercices de découverte de la primitive
Cours: Définition de la primitive et formule pour calculer des intégrales. Cours: Définition de la primitive et formule pour calculer des intégrales.
Étape 2: Calculer des primitives Étape 2: Calculer des primitives