Feat: dernière questions pour avoir du 2nd degré
continuous-integration/drone/push Build is passing
Details
continuous-integration/drone/push Build is passing
Details
This commit is contained in:
parent
85507d5d68
commit
96f778748f
Binary file not shown.
|
@ -27,7 +27,7 @@
|
|||
\begin{frame}{Calcul 2}
|
||||
Calculer la quantité suivante
|
||||
\[
|
||||
\int_3^6 2t^2 + \frac{1}{2}t \; \dt =
|
||||
\int_3^6 2t^2 + \frac{1}{2}t \; dt =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
|
@ -54,18 +54,11 @@
|
|||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
\vfill
|
||||
\textbf{Trouver la bonne forme}
|
||||
Résoudre l'équation
|
||||
\vfill
|
||||
|
||||
La fonction $f(x) = \ln(6x+1) + \ln(6x - 2) - 2\ln2$ est égale à
|
||||
|
||||
\begin{itemize}
|
||||
\item $\ln(9x^2 - 1)$
|
||||
\item $\ln(36x^2 - 1)$
|
||||
\item $\ln(12x - 4)$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\[
|
||||
x^2 + 2,8x - 0,6 = 0
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
|
|
Loading…
Reference in New Issue