Feat: 2E limites de polynômes
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
Bertrand Benjamin 2021-04-27 15:54:04 +02:00
parent 53e9a7f59e
commit a73a70fd1c
7 changed files with 263 additions and 120 deletions

View File

@ -0,0 +1,61 @@
\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\author{Benjamin Bertrand}
\title{Limites de fonctions - Cours}
\date{avril 2021}
\pagestyle{empty}
\begin{document}
\maketitle
\setcounter{section}{1}
\section{Limites de polynômes}
\begin{propriete}[Limites des monômes]
\begin{center}
\begin{tabular}{|l|*{2}{c|}}
\hline
$\ds \lim_{x\rightarrow ...} x^n = $ & $n$ paire & $n$ impaire\\
\hline
$+\infty$ & $+\infty$ & $+\infty$ \\
\hline
$-\infty$ & $+\infty$ & $-\infty$ \\
\hline
\end{tabular}
\end{center}
\end{propriete}
\paragraph{Exemples} Calculs de limites
\begin{multicols}{2}
$\ds \lim_{x\rightarrow +\infty} x^2 = $
$\ds \lim_{x\rightarrow -\infty} x^4 = $
$\ds \lim_{x\rightarrow +\infty} -5x^2 = $
\columnbreak
$\ds \lim_{x\rightarrow +\infty} x^3 = $
$\ds \lim_{x\rightarrow -\infty} x^5 = $
$\ds \lim_{x\rightarrow -\infty} -2x^3 = $
\end{multicols}
\afaire{Calculer les limites}
\begin{propriete}[Simplification des limites de polynôme]
La limite en $+\infty$ et $-\infty$ d'un polynôme est égale à la limite de son monôme de plus haut degré
\end{propriete}
\paragraph{Exemple} Calculs des limites
\begin{multicols}{2}
$\ds \lim_{x\rightarrow +\infty} x^2 - 3x + 1 = $
\columnbreak
$\ds \lim_{x\rightarrow -\infty} -2x^3 + 10x^2 - 100 = $
\end{multicols}
\end{document}

View File

@ -0,0 +1,23 @@
\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\author{Benjamin Bertrand}
\title{Limites de fonctions - Cours}
\date{avril 2021}
\DeclareExerciseCollection{banque}
\xsimsetup{
step=2,
}
\pagestyle{empty}
\begin{document}
\input{exercises.tex}
\printcollection{banque}
\vfill
\printcollection{banque}
\vfill
\end{document}

View File

@ -1,129 +1,178 @@
\collectexercises{banque}
\begin{exercise}[subtitle={Limites de fonctions}, step={1}, origin={Création}, topics={Limites de fonctions}, tags={Fonctions, limites}]
\begin{tikzpicture}[yscale=.5, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=0,ymax=10,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:5, line width=1pt]{x**2}
\tkzText[draw,fill = brown!20](3,1){$f(x)=x^2$}
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=0.5, xscale=1]
\tkzInit[xmin=-4,xmax=4,xstep=1,
ymin=-10,ymax=10,ystep=2]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:5, line width=1pt]{x**3}
\tkzText[draw,fill = brown!20](1,-2){$f(x)=x^3$}
\end{tikzpicture}
\begin{tikzpicture}[yscale=.5, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=0,ymax=10,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:5, line width=1pt]{x**2}
\tkzText[draw,fill = brown!20](3,1){$f(x)=x^2$}
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=0.5, xscale=1]
\tkzInit[xmin=-4,xmax=4,xstep=1,
ymin=-10,ymax=10,ystep=2]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:5, line width=1pt]{x**3}
\tkzText[draw,fill = brown!20](1,-2){$f(x)=x^3$}
\end{tikzpicture}
\begin{tikzpicture}[yscale=1, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=0,ymax=5,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:5, line width=1pt]{exp(x)}
\tkzText[draw,fill = brown!20](2,1){$f(x)=\text{e}^{x}$}
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=1, xscale=1.5]
\tkzInit[xmin=0,xmax=5,xstep=1,
ymin=-3,ymax=3,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = 0.01:5, line width=1pt]{log(x)}
\tkzText[draw,fill = brown!20](2,2){$f(x)=\ln(x)$}
\end{tikzpicture}
\begin{tikzpicture}[yscale=1, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=0,ymax=5,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:5, line width=1pt]{exp(x)}
\tkzText[draw,fill = brown!20](2,1){$f(x)=\text{e}^{x}$}
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=1, xscale=1.5]
\tkzInit[xmin=0,xmax=5,xstep=1,
ymin=-3,ymax=3,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = 0.01:5, line width=1pt]{log(x)}
\tkzText[draw,fill = brown!20](2,2){$f(x)=\ln(x)$}
\end{tikzpicture}
\begin{tikzpicture}[yscale=1.5, xscale=1]
\tkzInit[xmin=-2,xmax=7,xstep=1,
ymin=-2,ymax=2,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -2:8, line width=1pt]{1 - exp(-x)}
\tkzText[draw,fill = brown!20](1,1.5){$f(x)=1-e^{-x}$}
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=.5, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-5,ymax=5,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:-0.01, line width=1pt]{1/x}
\tkzFct[domain = 0.01:5, line width=1pt]{1/x}
\tkzText[draw,fill = brown!20](-2,2){$f(x)=\frac{1}{x}$}
\end{tikzpicture}
\begin{tikzpicture}[yscale=1.5, xscale=1]
\tkzInit[xmin=-2,xmax=7,xstep=1,
ymin=-2,ymax=2,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -2:8, line width=1pt]{1 - exp(-x)}
\tkzText[draw,fill = brown!20](1,1.5){$f(x)=1-e^{-x}$}
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=.5, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-5,ymax=5,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:-0.01, line width=1pt]{1/x}
\tkzFct[domain = 0.01:5, line width=1pt]{1/x}
\tkzText[draw,fill = brown!20](-2,2){$f(x)=\frac{1}{x}$}
\end{tikzpicture}
\begin{tikzpicture}[yscale=0.5, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-1,ymax=10,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:-0.01, line width=1pt]{1/x**2}
\tkzFct[domain = 0.01:5, line width=1pt]{1/x**2}
\tkzText[draw,fill = brown!20](3,3){$f(x)=\frac{1}{x^2}$}
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=1.5, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-2,ymax=2,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:5, line width=1pt]{cos(x)}
\tkzText[draw,fill = brown!20](3,1){$f(x)=\cos{x}$}
\end{tikzpicture}
\begin{tikzpicture}[yscale=0.5, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-1,ymax=10,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:-0.01, line width=1pt]{1/x**2}
\tkzFct[domain = 0.01:5, line width=1pt]{1/x**2}
\tkzText[draw,fill = brown!20](3,3){$f(x)=\frac{1}{x^2}$}
\end{tikzpicture}
\hfill
\begin{tikzpicture}[yscale=1.5, xscale=.8]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-2,ymax=2,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain = -5:5, line width=1pt]{cos(x)}
\tkzText[draw,fill = brown!20](3,1){$f(x)=\cos{x}$}
\end{tikzpicture}
À l'aide des graphiques ci-dessus, déterminer graphiquement les quantités suivantes
À l'aide des graphiques ci-dessus, déterminer graphiquement les quantités suivantes
\begin{multicols}{3}
\begin{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} x^2 = $
\item $\ds \lim_{x\rightarrow -\infty} x^2 = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} x^3 = $
\item $\ds \lim_{x\rightarrow -\infty} x^3 = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} e^x = $
\item $\ds \lim_{x\rightarrow -\infty} e^x = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} \ln(x) = $
\item $\ds \lim_{x\rightarrow 0} \ln(x) = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} 1-e^{-x} = $
\item $\ds \lim_{x\rightarrow -\infty} 1-e^{-x} = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow -\infty} \frac{1}{x} = $
\item $\ds \lim_{\substack{x\rightarrow 0 \\ <}} \frac{1}{x} = $
\item $\ds \lim_{\substack{x\rightarrow 0 \\ >}} \frac{1}{x} = $
\item $\ds \lim_{x\rightarrow +\infty} \frac{1}{x} = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow -\infty} \frac{1}{x^2} = $
\item $\ds \lim_{\substack{x\rightarrow 0 \\ <}} \frac{1}{x^2} = $
\item $\ds \lim_{\substack{x\rightarrow 0 \\ >}} \frac{1}{x^2} = $
\item $\ds \lim_{x\rightarrow +\infty} \frac{1}{x^2} = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} \cos(x) = $
\item $\ds \lim_{x\rightarrow -\infty} \cos(x) = $
\end{enumerate}
\end{enumerate}
\end{multicols}
\begin{multicols}{3}
\begin{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} x^2 = $
\item $\ds \lim_{x\rightarrow -\infty} x^2 = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} x^3 = $
\item $\ds \lim_{x\rightarrow -\infty} x^3 = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} e^x = $
\item $\ds \lim_{x\rightarrow -\infty} e^x = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} \ln(x) = $
\item $\ds \lim_{x\rightarrow 0} \ln(x) = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} 1-e^{-x} = $
\item $\ds \lim_{x\rightarrow -\infty} 1-e^{-x} = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow -\infty} \frac{1}{x} = $
\item $\ds \lim_{\substack{x\rightarrow 0 \\ <}} \frac{1}{x} = $
\item $\ds \lim_{\substack{x\rightarrow 0 \\ >}} \frac{1}{x} = $
\item $\ds \lim_{x\rightarrow +\infty} \frac{1}{x} = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow -\infty} \frac{1}{x^2} = $
\item $\ds \lim_{\substack{x\rightarrow 0 \\ <}} \frac{1}{x^2} = $
\item $\ds \lim_{\substack{x\rightarrow 0 \\ >}} \frac{1}{x^2} = $
\item $\ds \lim_{x\rightarrow +\infty} \frac{1}{x^2} = $
\end{enumerate}
\item
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} \cos(x) = $
\item $\ds \lim_{x\rightarrow -\infty} \cos(x) = $
\end{enumerate}
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{exercise}[subtitle={Découverte des limites de polynômes}, step={2}, origin={Création}, topics={Limites de fonctions}, tags={Fonctions, limites}]
Cet exercice se réaliser avec Géogebra. Son but est de déterminer deux règles pour calculer les limites de polynômes.
\begin{enumerate}
\item Limites de fonctions du type $x^n$$n$ est un entier non nul.
\begin{enumerate}
\item Régler les curseurs a, b, c, d, e et f pour obtenir le graphique de la fonction $P(x) = x$. Noter les limites en $-\infty$ et en $+\infty$.
\item Réaliser le même travail pour les fonctions $x^2$, $x^3$, $x^4$ et $x^5$.
\item Conjecturer les limites du tableau suivant:
\begin{center}
\begin{tabular}{|l|*{2}{c|}}
\hline
$\ds \lim_{x\rightarrow ...} x^n = $ & $n$ paire & $n$ impaire\\
\hline
$+\infty$ & & \\
\hline
$-\infty$ & & \\
\hline
\end{tabular}
\end{center}
\end{enumerate}
\item Simplification des limites des polynôme.
\begin{enumerate}
\item Régler les curseurs pour faire apparaitre la fonction $P(x) = x^5 + x^4 + x^3 + x^2 + x + 1$
\item Déplacer les curseurs b, c, d, e et f. Est-ce que ces curseurs ont un impact sur les limites en $+\infty$? en $-\infty$?
\item Proposer une façon de simplifier les calculs de limites.
\item Faire varier le curseur a, quel est son impact sur les limites?
\end{enumerate}
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={Calculs de limtes de polynômes}, step={2}, origin={Création}, topics={Limites de fonctions}, tags={Fonctions, limites}]
Calculer les limites suites
\begin{multicols}{3}
\begin{enumerate}
\item $\ds \lim_{x\rightarrow +\infty} 2x^2 + 3x + 1 = $
\item $\ds \lim_{x\rightarrow -\infty} 2x^2 + 3x + 1 = $
\item $\ds \lim_{x\rightarrow +\infty} -4x^2 + 3x + 1 = $
\item $\ds \lim_{x\rightarrow -\infty} -4x^2 + 100 x - 4 = $
\item $\ds \lim_{x\rightarrow +\infty} 4x^3 - 3x + 100 = $
\item $\ds \lim_{x\rightarrow -\infty} -7x^5 + 6x + 0.7 = $
\item $\ds \lim_{x\rightarrow +\infty} 2x^2 - 3x^3 + 19 = $
\item $\ds \lim_{x\rightarrow -\infty} -0.1x^11 + x + 1 = $
\item $\ds \lim_{x\rightarrow +\infty} \frac{-1}{2}x^5 + 3x + 1 = $
\end{enumerate}
\end{multicols}
\end{exercise}
\collectexercisesstop{banque}

View File

@ -2,7 +2,7 @@ Limites de fonctions
####################
:date: 2021-04-22
:modified: 2021-04-22
:modified: 2021-04-27
:authors: Benjamin Bertrand
:tags: Fonctions, Limites
:category: TST_sti2d
@ -30,6 +30,16 @@ Bilan: Tableau de variation et limites des fonctions de références
Établir les règles de simplifications des limites avec les polynômes. Début du calcul formel de limites.
.. image:: ./2E_limite_polynome.pdf
:height: 200px
:alt: Découverte et calculs des limites de polynômes.
Cours:
.. image:: ./2B_limite_polynome.pdf
:height: 200px
:alt: Cours sur les limites de polynômes
Étape 3: Croissances comparés avec l'exponentielle
==================================================