Feat: 2E pour les maths complémentaires
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
a73a70fd1c
commit
c32367380b
BIN
Complementaire/03_Logarithme/2E_table_log.pdf
Normal file
BIN
Complementaire/03_Logarithme/2E_table_log.pdf
Normal file
Binary file not shown.
51
Complementaire/03_Logarithme/2E_table_log.tex
Normal file
51
Complementaire/03_Logarithme/2E_table_log.tex
Normal file
@ -0,0 +1,51 @@
|
||||
\documentclass[a5paper 10pt]{article}
|
||||
\usepackage{myXsim}
|
||||
|
||||
\usepackage{fp}
|
||||
\usepackage{ifthen}
|
||||
|
||||
\setlength\parindent{0pt}
|
||||
|
||||
\author{Benjamin Bertrand}
|
||||
\title{Logarithme - Cours}
|
||||
\date{avril 2021}
|
||||
|
||||
\newcounter{mycount}
|
||||
|
||||
\newcommand\tablelog{%
|
||||
\setcounter{mycount}{0}
|
||||
|
||||
\begin{multicols}{6}
|
||||
\whiledo{\value{mycount}<310}
|
||||
{
|
||||
\stepcounter{mycount}%
|
||||
\stepcounter{mycount}%
|
||||
\makebox[4em]{\themycount}% steps the counter and typesets the value of t
|
||||
\FPln{\natlogoft}{\themycount}
|
||||
\FPeval{\res}{round(\natlogoft, 3)}\res\\
|
||||
}% calculates Ln(t) and typsets it
|
||||
\end{multicols}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
% the counter for the loop
|
||||
% the command that stores logarithms
|
||||
|
||||
\begin{center}
|
||||
\textbf{Table du log en base $e$}
|
||||
\end{center}
|
||||
\tablelog
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\begin{center}
|
||||
\textbf{Table du log en base $e$}
|
||||
\end{center}
|
||||
\tablelog
|
||||
|
||||
|
||||
% the counter for the loop
|
||||
|
||||
\end{document}
|
BIN
Complementaire/03_Logarithme/2P_sans_calculatrice.pdf
Normal file
BIN
Complementaire/03_Logarithme/2P_sans_calculatrice.pdf
Normal file
Binary file not shown.
156
Complementaire/03_Logarithme/2P_sans_calculatrice.tex
Normal file
156
Complementaire/03_Logarithme/2P_sans_calculatrice.tex
Normal file
@ -0,0 +1,156 @@
|
||||
\documentclass[11pt,xcolor=table]{classPres}
|
||||
|
||||
\setlength\columnsep{0pt}
|
||||
|
||||
\title{Calculer sans calculatrices}
|
||||
\date{Avril 2021}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{frame}{Calculs avant la calculatrice}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale Maths complémentaires
|
||||
\vfill
|
||||
Logarithme
|
||||
\hfill
|
||||
\end{center}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Tous les chiffres sont-ils nécessaires?\\ Calculs babyloniens}
|
||||
Faire les multiplications
|
||||
\[
|
||||
12\times 8 = \qquad\qquad 120 \times 80 = \qquad\qquad 1,2 \times 8 =
|
||||
\]
|
||||
\[
|
||||
0,0012\times 80 = \qquad\qquad 0,012 \times 0,8 = \qquad\qquad 1200 \times 0,8 =
|
||||
\]
|
||||
\pause
|
||||
La numération babylonienne ne permettait pas de faire la différence entre 12, 120, 1,2 ou 1200. Malgré cela, ils pouvaient faire des multiplications.
|
||||
|
||||
\pause
|
||||
\begin{itemize}
|
||||
\item Multiplication des deux nombres
|
||||
\item Rectification de la \textit{mantisse}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Multiplications babyloniennes}
|
||||
On donne
|
||||
\[
|
||||
13 \times 21 = 252
|
||||
\]
|
||||
Faire les multiplications suivantes
|
||||
\[
|
||||
1,3 \times 2,1 = \qquad \qquad 1300 \times 0,21 =
|
||||
\]
|
||||
\[
|
||||
0,13 \times 2,1 = \qquad \qquad 1300 \times 2100 =
|
||||
\]
|
||||
\pause
|
||||
Comment faire les multiplications de base?
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Table de Neper \\ Transformer des $\times$ en $+$}
|
||||
\vfill
|
||||
Faire la multiplication $8\times 32 = $
|
||||
\vfill
|
||||
\pause
|
||||
\begin{center}
|
||||
\begin{tabular}{|c|*{9}{c|}}
|
||||
\hline
|
||||
Axe $\times$ & 1 & 2 & 4 & 8 & 16 & 32 & 64 & 128 & 256 \\
|
||||
\hline
|
||||
Axe $+$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\vfill
|
||||
\pause
|
||||
Table du logarithme de base 2
|
||||
\end{center}
|
||||
\vfill
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Tables de logarithmes \\ ou table de Nepper}
|
||||
\begin{center}
|
||||
Table du logarithme de base 2
|
||||
\begin{tabular}{|c|*{9}{c|}}
|
||||
\hline
|
||||
Axe $\times$ & 1 & 2 & 4 & 8 & 16 & 32 & 64 & 128 & 256 \\
|
||||
\hline
|
||||
Axe $+$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\vfill
|
||||
\end{center}
|
||||
\begin{center}
|
||||
Table du logarithme de base 10
|
||||
\begin{tabular}{|c|*{9}{c|}}
|
||||
\hline
|
||||
Axe $\times$ & 0.001 & 0.01 & 0.1 & 1 & 10 & 100 & 1000 & 1000 \\
|
||||
\hline
|
||||
Axe $+$ & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\end{center}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Table du logarithme de base $e$
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Multiplications avec des additions}
|
||||
\begin{itemize}
|
||||
\item Calculs directs
|
||||
\begin{multicols}{2}
|
||||
\begin{itemize}
|
||||
\item $8 \times 22 = $
|
||||
\item $6 \times 32 = $
|
||||
\item $14 \times 22 = $
|
||||
\item $16 \times 18 = $
|
||||
\end{itemize}
|
||||
\end{multicols}
|
||||
\item Calculs avec "l'astuce" des babyloniens
|
||||
\begin{multicols}{2}
|
||||
\begin{itemize}
|
||||
\item $0,08 \times 0,36 = $
|
||||
\item $600 \times 4400 = $
|
||||
\item $0,14 \times 140 = $
|
||||
\item $16000 \times 0,0014 = $
|
||||
\end{itemize}
|
||||
\end{multicols}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Les fonctions logarithmes}
|
||||
\begin{block}{Propriété}
|
||||
Il existe une famille de fonctions définie sur $\R^{+*}$ qui respecte la relation
|
||||
\[
|
||||
f(a\times b) = f(a) + f(b)
|
||||
\]
|
||||
Cette famille s'appelle les fonctions logarithmes.
|
||||
\end{block}
|
||||
|
||||
\vfill
|
||||
\pause
|
||||
\begin{block}{Exemples}
|
||||
\begin{itemize}
|
||||
\item Logarithme de base 10: $\log(x)$ avec $\log(10^x) = x$.
|
||||
\item Logarithme de base 2: $\log_2(x)$ avec $\log_2(2^x) = x$.
|
||||
\item Logarithme de base $e$: $\ln(x)$ avec $\ln(e^x) = x$.
|
||||
\end{itemize}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "master"
|
||||
%%% End:
|
||||
|
@ -80,5 +80,22 @@
|
||||
\end{enumerate}
|
||||
\end{exercise}
|
||||
|
||||
\begin{exercise}[subtitle={Table de log}, step={2}, origin={Création}, topics={Fonction Logarithme}, tags={Analyse, logarithme}]
|
||||
\usepackage{fp}
|
||||
\usepackage{ifthen}
|
||||
|
||||
\setlength\parindent{0pt}
|
||||
|
||||
% the counter for the loop
|
||||
\newcounter{mycount}
|
||||
% the command that stores logarithms
|
||||
\newcommand\natlogoft
|
||||
|
||||
\begin{document}
|
||||
|
||||
\whiledo{\value{mycount}<1000}
|
||||
{\stepcounter{mycount}\makebox[4em]{\themycount}% steps the counter and typesets the value of t
|
||||
\FPln{\natlogoft}{\themycount}\natlogoft\\}% calculates Ln(t) and typsets it
|
||||
\end{exercise}
|
||||
|
||||
\collectexercisesstop{banque}
|
||||
|
@ -2,7 +2,7 @@ Logarithme
|
||||
##########
|
||||
|
||||
:date: 2021-04-25
|
||||
:modified: 2021-04-25
|
||||
:modified: 2021-04-27
|
||||
:authors: Benjamin Bertrand
|
||||
:tags: Exponentielle, Logarithme
|
||||
:category: Complementaire
|
||||
@ -23,3 +23,13 @@ Exercices: Exercices techniques sur la manipulation d'expressions avec l'exponen
|
||||
:height: 200px
|
||||
:alt: Exercices techniques sur l'exponentielle
|
||||
|
||||
Étape 2: Approche historique du log
|
||||
===================================
|
||||
|
||||
.. image:: ./2P_sans_calculatrice.pdf
|
||||
:height: 200px
|
||||
:alt: Faire des multiplications sans calculatrices
|
||||
|
||||
.. image:: ./2E_table_log.pdf
|
||||
:height: 200px
|
||||
:alt: Table de log
|
||||
|
Loading…
Reference in New Issue
Block a user