Feat: QF sti2d pour S10
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
03794c0a5f
commit
ef05ccc52a
BIN
TST_sti2d/Questions_Flash/P4/QF_21_03_08-1.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P4/QF_21_03_08-1.pdf
Normal file
Binary file not shown.
58
TST_sti2d/Questions_Flash/P4/QF_21_03_08-1.tex
Executable file
58
TST_sti2d/Questions_Flash/P4/QF_21_03_08-1.tex
Executable file
@ -0,0 +1,58 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
Soit $f(x) = K e^{0.5x} - 5$.
|
||||
|
||||
On suppose que $f(0) = 2$.
|
||||
|
||||
Retrouver la valeur de $K$.
|
||||
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Vérifier que
|
||||
\[
|
||||
F(x) = (x+1)e^{-x^2} + \frac{2}{3}
|
||||
\]
|
||||
est une primitive de
|
||||
\[
|
||||
f(x) = (-2x^2 -2x + 1)e^{-x^2}
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Soit
|
||||
\[
|
||||
z = -2\sqrt{2} + 2\sqrt{2}i
|
||||
\]
|
||||
On donne $r = |z| = 4$.
|
||||
|
||||
Déterminer l'argument de $z$.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
TST_sti2d/Questions_Flash/P4/QF_21_03_08-2.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P4/QF_21_03_08-2.pdf
Normal file
Binary file not shown.
58
TST_sti2d/Questions_Flash/P4/QF_21_03_08-2.tex
Executable file
58
TST_sti2d/Questions_Flash/P4/QF_21_03_08-2.tex
Executable file
@ -0,0 +1,58 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
Soit $f(x) = K e^{0.5x} - 5$.
|
||||
|
||||
On suppose que $f(2) = 2$.
|
||||
|
||||
Retrouver la valeur de $K$.
|
||||
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Vérifier que
|
||||
\[
|
||||
f(t) = 10 e^{-0.2t} - 25
|
||||
\]
|
||||
est une solution de
|
||||
\[
|
||||
y' = -0.2y + 5
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Soit
|
||||
\[
|
||||
z = -2 + 2\sqrt{3}i
|
||||
\]
|
||||
On donne $r = |z| = 4$.
|
||||
|
||||
Déterminer l'argument de $z$.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user