Compare commits
2 Commits
60ed4f7cb7
...
dc4f5b987f
Author | SHA1 | Date | |
---|---|---|---|
dc4f5b987f | |||
00263ebd7a |
Binary file not shown.
@ -115,37 +115,33 @@
|
|||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
\begin{exercise}[subtitle={Algébrique -> Exponentielle}, step={2}, origin={Création}, topics={Exponentielle complexe}, tags={Complexe}]
|
\begin{exercise}[subtitle={Algébrique -> Exponentielle}, step={2}, origin={Création}, topics={Exponentielle complexe}, tags={Complexe}]
|
||||||
|
Placer les nombres suivants sur le plan complexe puis mettre sous forme exponentielle.
|
||||||
\begin{multicols}{3}
|
\begin{multicols}{3}
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
\item $z_1 = 1$
|
\item $z_1 = 1$
|
||||||
\item $z_2 = -3i$
|
\item $z_2 = -3i$
|
||||||
|
|
||||||
\item $z_3 = 1 + i\sqrt{3}$
|
\item $z_3 = 1 + i\sqrt{3}$
|
||||||
|
\item $z_4 = \sqrt{3} + i$
|
||||||
|
|
||||||
\item $z_4 = 2i$
|
\item $z_5 = 1 - i$
|
||||||
\item $z_5 = \sqrt{3} + i$
|
\item $z_6 = \frac{-1 - i\sqrt{3}}{2}$
|
||||||
\item $z_6 = 10\sqrt{3}i$
|
|
||||||
|
|
||||||
\item $z_7 = 1 - i$
|
|
||||||
\item $z_8 = \sqrt{3} + 3i$
|
|
||||||
\item $z_9 = \frac{-1 - i\sqrt{3}}{2}$
|
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{multicols}
|
\end{multicols}
|
||||||
\end{exercise}
|
\end{exercise}
|
||||||
|
|
||||||
\begin{exercise}[subtitle={Exponentielle -> Algébrique}, step={2}, origin={Création}, topics={Exponentielle complexe}, tags={Complexe}]
|
\begin{exercise}[subtitle={Exponentielle -> Algébrique}, step={2}, origin={Création}, topics={Exponentielle complexe}, tags={Complexe}]
|
||||||
|
Placer les nombres suivants sur le plan complexe puis mettre sous forme algébrique.
|
||||||
\begin{multicols}{3}
|
\begin{multicols}{3}
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
\item $z_1 = e^{i\pi}$
|
\item $z_1 = e^{i\pi}$
|
||||||
\item $z_2 = e^{-i\frac{\pi}{3}}$
|
\item $z_2 = 1e^{i\frac{\pi}{4}}$
|
||||||
\item $z_3 = 2e^{i\frac{\pi}{4}}$
|
|
||||||
|
|
||||||
\item $z_4 = e^{-i\frac{\pi}{2}}$
|
\item $z_3 = e^{-i\frac{\pi}{2}}$
|
||||||
\item $z_5 = 5e^{-i\frac{4\pi}{3}}$
|
\item $z_4 = 5e^{-i\frac{4\pi}{3}}$
|
||||||
\item $z_6 = e^{i\frac{\pi}{2}} + e^{-2i\pi}$
|
|
||||||
|
|
||||||
\item $z_7 = 10e^{i\frac{2\pi}{6}}$
|
\item $z_5 = 10e^{i\frac{2\pi}{6}}$
|
||||||
\item $z_8 = \frac{1}{2}e^{i\pi}$
|
\item $z_6 = \frac{1}{2}e^{i\pi}$
|
||||||
\item $z_9 = 56e^{-i\frac{\pi}{6}}$
|
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{multicols}
|
\end{multicols}
|
||||||
\end{exercise}
|
\end{exercise}
|
||||||
|
BIN
TST_sti2d/Questions_Flash/P3/QF_21_02_01-2.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P3/QF_21_02_01-2.pdf
Normal file
Binary file not shown.
49
TST_sti2d/Questions_Flash/P3/QF_21_02_01-2.tex
Executable file
49
TST_sti2d/Questions_Flash/P3/QF_21_02_01-2.tex
Executable file
@ -0,0 +1,49 @@
|
|||||||
|
\documentclass[14pt]{classPres}
|
||||||
|
\usepackage{tkz-fct}
|
||||||
|
|
||||||
|
\author{}
|
||||||
|
\title{}
|
||||||
|
\date{}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\begin{frame}{Questions flashs}
|
||||||
|
\begin{center}
|
||||||
|
\vfill
|
||||||
|
Terminale ST \\ Spé sti2d
|
||||||
|
\vfill
|
||||||
|
30 secondes par calcul
|
||||||
|
\vfill
|
||||||
|
\tiny \jobname
|
||||||
|
\end{center}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}[fragile]{Calcul 1}
|
||||||
|
Calculer la quantité
|
||||||
|
\[
|
||||||
|
\int_1^{10} 4e^{-0.5x} \; dx
|
||||||
|
\]
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Calcul 2}
|
||||||
|
Dériver la fonction suivante
|
||||||
|
\[
|
||||||
|
f(x) = x^2 e^{-0.1x}
|
||||||
|
\]
|
||||||
|
\vfill
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Calcul 3}
|
||||||
|
Écrire le nombre complexe suivant sous forme algébrique
|
||||||
|
\[
|
||||||
|
z = \frac{10}{1-2i}
|
||||||
|
\]
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Fin}
|
||||||
|
\begin{center}
|
||||||
|
On retourne son papier.
|
||||||
|
\end{center}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
Loading…
Reference in New Issue
Block a user