Порівняти коміти

...

4 Коміти

Автор SHA1 Повідомлення Дата
ed5f1ec501 Feat: Exercices sur les étapes pour l'étude de variations d'une fonction
Всі перевірки були успішними
continuous-integration/drone/push Build is passing
2020-08-25 14:56:59 +02:00
3a5453c8f0 Feat: changemenet de la pipeline 2020-08-25 14:44:38 +02:00
224dabb42f Feat: Cours sur les formules de dérivation 2020-08-25 14:28:28 +02:00
aec26bd9d7 Fix: nom du cours 2020-08-25 14:09:15 +02:00
9 змінених файлів з 146 додано та 12 видалено

@@ -33,12 +33,9 @@ Pour \textbf{optimiser}, la démarche sera toujours la même:
{
\node [block] (fct) {$f$ la fonction à optimiser}; &
\node [block] (derv) {$f'$ la fonction dérivée}; &
\node [block] (sgn)
{Étude du signe de la dérivée}; &
\node [block] (varia)
{Étude de variations de la fonction}; &
\node [block] (minmax)
{Recherche min/max};
\node [block] (sgn) {Tableau de signes de $f'$}; &
\node [block] (varia) {Tableau de variations de $f$}; &
\node [block] (minmax) {Minimum ou maximum};
\\
};
\tikzstyle{every path}=[line]

Бінарний файл не відображається.

Бінарний файл не відображається.

@@ -0,0 +1,61 @@
\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\author{Benjamin Bertrand}
\title{Dérivation - Cours}
\date{août 2020}
\pagestyle{empty}
\begin{document}
\maketitle
\setcounter{section}{1}
\section{Formules de dérivation}
\subsection*{Propriété - formules de dérivation de polynômes}
\begin{center}
\begin{tabular}{|m{4cm}|m{4cm}|}
\hline
\rowcolor{highlightbg}
Fonction $f$ & Fonction dérivée $f'$ \\
\hline
$a$ & $0$ \\
\hline
$ax$ & $a$ \\
\hline
$ax^2$ & $2ax$ \\
\hline
$ax^3$ & $3ax^2$\\
\hline
\rowcolor{tabular}
$ax^n$ & $nax^{n-1}$\\
\hline
\end{tabular}
\end{center}
(la dernière ligne du tableau est uniquement au programme pour les sti2d)
\subsection*{Propriété - Opérations sur les dérivées}
Soit $u$ et $v$ deux fonctions dérivables sur un intervalle $I$ et $k$ un nombre réel alors
\begin{itemize}
\item La dérivée de $f(x) = u(x) + v(x)$ est $f'(x) = u'(x) + v'(x)$.
\item La dérivée de $f(x) = k \times u(x)$ est $f'(x) = k \times u'(x)$.
\end{itemize}
(les sti2d vous devez aussi connaître la formule du produit)
\subsection*{Exemple}
On veut calculer la fonction dérivée de $f(x) = 2x^2 + 3x + 1$
\begin{flalign*}
f'(x) &=&
\end{flalign*}
\afaire{Dériver la fonction}
\end{document}

Бінарний файл не відображається.

@@ -0,0 +1,18 @@
\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\author{Benjamin Bertrand}
\title{Dérivation - Cours}
\date{août 2020}
\DeclareExerciseCollection{banque}
\xsimsetup{
step=3,
}
\begin{document}
\input{exercises.tex}
\printcollection{banque}
\end{document}

@@ -94,4 +94,56 @@
\end{tikzpicture}
\end{enumerate}
\end{exercise}
\begin{exercise}[subtitle={$f$ -> $f'$}, step={3}, origin={Création}, topics={Dérivation}, tags={Technique}]
Dériver les fonctions suivantes
\begin{multicols}{3}
\begin{enumerate}
\item $f(x) = x^3 + x$
\item $g(x) = 4x^3 - 2x + 4$
\item $h(x) = 10x + 4 - 2x^2$
\item $i(x) = -0.3x^3 - 2x + 2$
\item $j(x) = -5x^3 - 2x + x + 3$
\item $k(x) = \dfrac{5}{6}x^3 - 2x + \dfrac{1}{2}$
\item $i(x) = \dfrac{1}{4}x^2 - \dfrac{4}{9}x^3 + 10$
\item $j(x) = (0.2x + 2)(0.1x - 10)$
\item $k(x) = (2x + 1)(x-3)$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{exercise}[subtitle={$f'$ -> tableau de signe}, step={3}, origin={Création}, topics={Dérivation}, tags={Technique}]
\begin{enumerate}
\item Résoudre les inéquations suivantes et faire une phrase pour décrire les solutions.
\begin{multicols}{3}
\begin{enumerate}
\item $2x + 4 > 0$
\item $5x + 15 < 0$
\item $-2x + 3 > 0$
\item $-x - 4 < 0$
\item $\dfrac{2}{3}x + 5 \geq 0$
\item $6x + 15 \leq 5x$
\end{enumerate}
\end{multicols}
\item Tracer les tableaux de signes des fonctions suivantes
\begin{multicols}{3}
\begin{enumerate}
\item $f(x) = 2x + 4 $
\item $g(x) = 5x + 15$
\item $h(x) = 3x - 12$
\item $i(x) = -15x + 10$
\item $j(x) = \frac{2}{3}x - 1$
\item $k(x) = 2 - \frac{6}{5}x$
\end{enumerate}
\end{multicols}
\end{enumerate}
\end{exercise}
\collectexercisesstop{banque}

@@ -40,19 +40,25 @@ Tracer tableaux à partir de graphiques et de formule pure (utilisation de la ca
:height: 200px
:alt: Tracer des tableaux de signes et de variations à partir de graphiques et inversement.
Étape 3: Technique dérivation
=============================
Étape 3: Étapes décomposées
===========================
Formule de dérivation et dérivation.
Cours: Formules de dérivations
.. image:: 3B_formules.pdf
:height: 200px
:alt: Formules de dérivations
Les élèves arrivent en classe en ayant auparavant écrit le cours sur les formules de dérivation.
Cette étape va reprendre les étapes de la recherche de variations de façon séparée. Elle est alors assez technique. Il faudra réussir à la dynamiser pour que les élèves ne s'essoufflent pas!
Étape 4: Liens signes dérivé et variations fonctions
====================================================
Plusieurs fonctions à regrouper en famille de dérivation puis tracer les tableaux pour retrouver les liens.
Durcissement, forme facto à dev
Étape 5: Dérivation et étude de signes
Étape 4: Dérivation et étude de signes
======================================
Exercices et problèmes