Bertrand Benjamin
de6f6cd4e7
All checks were successful
continuous-integration/drone/push Build is passing
51 lines
863 B
TeX
Executable File
51 lines
863 B
TeX
Executable File
\documentclass[14pt]{classPres}
|
|
\usepackage{tkz-fct}
|
|
|
|
\author{}
|
|
\title{}
|
|
\date{}
|
|
|
|
\begin{document}
|
|
\begin{frame}{Questions flashs}
|
|
\begin{center}
|
|
\vfill
|
|
Terminale ST \\ Spé sti2d
|
|
\vfill
|
|
30 secondes par calcul
|
|
\vfill
|
|
\tiny \jobname
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}[fragile]{Calcul 1}
|
|
Calculer la primitive de
|
|
\[
|
|
f(x) = 8x^3 - 6x^2 + 1
|
|
\]
|
|
\end{frame}
|
|
|
|
\begin{frame}{Calcul 2}
|
|
Soit $f(x) = 4e^{2x}$ et une primitive $F(x) = 2e^{2x}$. Calculer la quantité suivante
|
|
\[
|
|
\int_{1}^{2} 4e^{2x} \; dx =
|
|
\]
|
|
\vfill
|
|
\end{frame}
|
|
|
|
\begin{frame}{Calcul 3}
|
|
Dériver la fonction suivante
|
|
\[
|
|
f(x) = (2x+1)e^x
|
|
\]
|
|
\vfill
|
|
\end{frame}
|
|
|
|
\begin{frame}{Fin}
|
|
\begin{center}
|
|
On retourne son papier.
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
\end{document}
|