Bertrand Benjamin
13ca265b07
All checks were successful
continuous-integration/drone/push Build is passing
56 lines
953 B
TeX
Executable File
56 lines
953 B
TeX
Executable File
\documentclass[14pt]{classPres}
|
|
\usepackage{tkz-fct}
|
|
|
|
\author{}
|
|
\title{}
|
|
\date{}
|
|
|
|
\begin{document}
|
|
\begin{frame}{Questions flashs}
|
|
\begin{center}
|
|
\vfill
|
|
Terminale ST \\ Spé sti2d
|
|
\vfill
|
|
30 secondes par calcul
|
|
\vfill
|
|
\tiny \jobname
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}[fragile]{Calcul 1}
|
|
Calculer une primitive de
|
|
\[
|
|
f(x) = 2x(4x + 2)
|
|
\]
|
|
\end{frame}
|
|
|
|
\begin{frame}{Calcul 2}
|
|
Une primitive de $f(x) = 2x+1$ est
|
|
\[
|
|
F(x) = x^2 + x
|
|
\]
|
|
Calculer
|
|
\[
|
|
\int_2^3 f(x)\; dx =
|
|
\]
|
|
\end{frame}
|
|
|
|
\begin{frame}{Calcul 3}
|
|
Soit
|
|
\[
|
|
z = 1 - \sqrt{3}i
|
|
\]
|
|
Calculer le module et l'argument de $z$.
|
|
\vfill
|
|
Soit $z$ le nombre complexe de module $r=0.1$ et d'argument $\theta = \dfrac{-4\pi}{2}$
|
|
\end{frame}
|
|
|
|
\begin{frame}{Fin}
|
|
\begin{center}
|
|
On retourne son papier.
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
\end{document}
|