2022-05-03 07:48:00 +00:00
|
|
|
\begin{exercise}[subtitle={Classement}, step={1}, origin={???}, topics={ Pythagore reciproque }, tags={ Pythagore, géométrie }]
|
|
|
|
On a représenté 5 figure géométriques à 2 échelles différentes sur les grilles ci-dessous
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\includegraphics[scale=0.8]{./fig/classer_perim_aire.pdf}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\begin{enumerate}
|
|
|
|
\item Classer les figures par ordre croissant de leur périmètre.
|
|
|
|
\item Classer les figures par ordre croissant de leur aire.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{exercise}
|
|
|
|
|
|
|
|
\begin{exercise}[subtitle={Classement - avancé}, step={1}, origin={???}, topics={ Pythagore reciproque }, tags={ Pythagore, géométrie }]
|
|
|
|
On a représenté les polygones ci-dessous
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\includegraphics[scale=0.7]{./fig/aire_polyognes.pdf}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\begin{enumerate}
|
|
|
|
\item Avec quelle unité va-t-on mesurer le périmètre de ces polygones? Avec quelle unité va-t-on mesurer l'aire?
|
|
|
|
\item Calculer l'aire de chacune de ces figures.
|
|
|
|
\item Calculer quand c'est possible le périmètre de ces figures.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{exercise}
|
|
|
|
|
|
|
|
\begin{exercise}[subtitle={Création}, step={1}, origin={MEpC}, topics={ Pythagore reciproque }, tags={ Pythagore, géométrie }]
|
|
|
|
\begin{enumerate}
|
|
|
|
\item Représenter sur quadrillage deux figures qui ont la même aire et des périmètres différents.
|
|
|
|
\item Représenter sur quadrillage deux figures qui ont le même périmètres et des aires différentes.
|
|
|
|
\item
|
|
|
|
\begin{enumerate}
|
|
|
|
\item Le périmètre d'un carré vaut 36cm. Son côté vaut donc ?
|
|
|
|
\item L'aire d'un carré vaut $36cm^2$. Son côté vaut donc ?
|
|
|
|
\end{enumerate}
|
|
|
|
\end{enumerate}
|
|
|
|
\end{exercise}
|
|
|
|
|
|
|
|
% ----
|
|
|
|
|
|
|
|
\begin{exercise}[subtitle={Construction de triangles}, step={2}, origin={MEpC}, topics={ Pythagore reciproque }, tags={ Pythagore, géométrie }]
|
|
|
|
Voici des séries de 3 nombres représentant les longueurs des côtés de triangles.
|
|
|
|
\begin{multicols}{3}
|
|
|
|
\begin{enumerate}[label={$\triangle$ \Alph*:}]
|
|
|
|
\item 2; 5; 4
|
|
|
|
\item 2; 5; 9
|
|
|
|
|
|
|
|
\item 3; 3; 3
|
|
|
|
\item 3; 3; 4,2
|
|
|
|
|
|
|
|
\item 4; 5.9; 4,3
|
|
|
|
\item 5,1; 2,2 ; 2,9
|
|
|
|
\end{enumerate}
|
|
|
|
\end{multicols}
|
|
|
|
\begin{enumerate}
|
|
|
|
\item Pour chaque série, dire si on peu construire le triangle.
|
|
|
|
\begin{itemize}
|
|
|
|
\item Si non, expliquer pourquoi
|
|
|
|
\item Si oui, faire des remarques sur le type de triangle que l'on pourra obtenir.
|
|
|
|
\end{itemize}
|
|
|
|
\item Construire le triangle quand c'est possible et vérifier le type.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{exercise}
|
|
|
|
|
|
|
|
\begin{exercise}[subtitle={Mesure du 3e côté}, step={2}, origin={MEpC}, topics={ Pythagore reciproque }, tags={ Pythagore, géométrie }]
|
|
|
|
Pour chacun des triangles suivant, le tracer et mesurer la longueur du côté manquant.
|
|
|
|
\begin{multicols}{3}
|
|
|
|
\begin{enumerate}
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[rotate=0, scale=0.6]
|
2022-05-03 13:58:48 +00:00
|
|
|
\draw[fill=blue!20]
|
2022-05-03 07:48:00 +00:00
|
|
|
(-2,0) -- node[midway, left]{3cm}
|
|
|
|
(-2,-3) -- node[midway, below]{4cm}
|
|
|
|
(3,-3) --
|
|
|
|
cycle;
|
|
|
|
\draw (-2, -3) rectangle (-1.8, -2.8);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\item
|
2022-05-03 13:58:48 +00:00
|
|
|
\begin{tikzpicture}[rotate=30, scale=0.6, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(-2,0) -- node[sloped, midway, below]{\LARGE 8cm}
|
|
|
|
(-2,-3) -- node[sloped, midway, below]{\LARGE 15cm}
|
2022-05-03 07:48:00 +00:00
|
|
|
(3,-3) --
|
|
|
|
cycle;
|
|
|
|
\draw (-2, -3) rectangle (-1.8, -2.8);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\item
|
2022-05-03 13:58:48 +00:00
|
|
|
\begin{tikzpicture}[rotate=170, scale=0.6, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(-2,0) -- node[sloped, midway, below]{\LARGE 28cm}
|
2022-05-03 07:48:00 +00:00
|
|
|
(-2,-3) --
|
2022-05-03 13:58:48 +00:00
|
|
|
(3,-3) -- node[sloped, midway, above]{\LARGE 53cm}
|
2022-05-03 07:48:00 +00:00
|
|
|
cycle;
|
|
|
|
\draw (-2, -3) rectangle (-1.8, -2.8);
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
|
|
|
|
\end{enumerate}
|
|
|
|
\end{multicols}
|
|
|
|
\begin{enumerate}
|
|
|
|
\setcounter{enumi}{3}
|
|
|
|
\item Triangle $ABC$ rectangle en A tel que $AB = 5cm$ et $AC = 12cm$
|
|
|
|
\end{enumerate}
|
|
|
|
\end{exercise}
|
|
|
|
|
|
|
|
% ----
|
|
|
|
|
|
|
|
\begin{exercise}[subtitle={Calcul du 3e côté}, step={3}, origin={MEpC}, topics={ Pythagore reciproque }, tags={ Pythagore, géométrie }]
|
2022-05-03 13:58:48 +00:00
|
|
|
Pour chacun des triangles déterminer la longueur du côté manquant
|
|
|
|
|
|
|
|
\begin{multicols}{3}
|
|
|
|
\begin{enumerate}
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=0, scale=0.7]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, sloped, below]{3cm}
|
|
|
|
(-3,0) -- node[midway, sloped, above]{2cm}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\draw (0, 0) rectangle ++(-3, -3);
|
|
|
|
\draw (-3, 0) rectangle ++(-2, 2);
|
|
|
|
\draw (0, 0) -- (2, 3) -- (-1, 5) -- (-3, 2) -- cycle;
|
|
|
|
\end{tikzpicture}
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=30, scale=0.7, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, below, sloped]{\large 36cm}
|
|
|
|
(-3,0) -- node[midway, above, sloped]{\large 77cm}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\draw (0, 0) rectangle ++(-3, -3);
|
|
|
|
\draw (-3, 0) rectangle ++(-2, 2);
|
|
|
|
\draw (0, 0) -- (2, 3) -- (-1, 5) -- (-3, 2) -- cycle;
|
|
|
|
\end{tikzpicture}
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=180, scale=0.7, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, above, sloped, rotate=180]{\large 48m}
|
|
|
|
(-3,0) -- node[midway, above, sloped]{\large 55m}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\draw (0, 0) rectangle ++(-3, -3);
|
|
|
|
\draw (-3, 0) rectangle ++(-2, 2);
|
|
|
|
\draw (0, 0) -- (2, 3) -- (-1, 5) -- (-3, 2) -- cycle;
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{enumerate}
|
|
|
|
\end{multicols}
|
|
|
|
|
|
|
|
\begin{multicols}{4}
|
|
|
|
\begin{enumerate}
|
|
|
|
\setcounter{enumi}{3}
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=50, scale=0.7, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, sloped, below]{\large 7cm}
|
|
|
|
(-3,0) -- node[midway, sloped, above]{\large 24cm}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=40, scale=0.7, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, below, sloped]{\large 1,6cm}
|
|
|
|
(-3,0) -- node[midway, above, sloped]{\large 63cm}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=100, scale=0.7, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, above, sloped, rotate=180]{\large 6.5m}
|
|
|
|
(-3,0) -- node[midway, above, sloped]{\large 72m}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=0, scale=0.7, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, above, sloped, rotate=180]{\large 2m}
|
|
|
|
(-3,0) -- node[midway, above, sloped]{\large 1m}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{enumerate}
|
|
|
|
\end{multicols}
|
|
|
|
|
|
|
|
\begin{multicols}{2}
|
|
|
|
\begin{enumerate}
|
|
|
|
\setcounter{enumi}{7}
|
|
|
|
\item Triangle $ABC$ rectangle en $A$ tel que \\ $AB = 60mm$ et $AC=91mm$
|
|
|
|
\item Triangle $IJK$ rectangle en $K$ tel que \\ $AB = 13m$ et $AC=84m$
|
|
|
|
\item Triangle $LMN$ rectangle en $L$ tel que \\ $AB = 3cm$ et $AC=7m$
|
|
|
|
\item Triangle $EFG$ rectangle en $E$ tel que \\ $AB = 6m$ et $AC=12m$
|
|
|
|
\end{enumerate}
|
|
|
|
\end{multicols}
|
|
|
|
|
|
|
|
\end{exercise}
|
|
|
|
|
|
|
|
\begin{exercise}[subtitle={Calcul d'un petit côté}, step={3}, origin={MEpC}, topics={ Pythagore reciproque }, tags={ Pythagore, géométrie }]
|
|
|
|
Pour chacun des triangles déterminer la longueur du côté manquant
|
|
|
|
|
|
|
|
\begin{multicols}{3}
|
|
|
|
\begin{enumerate}
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=0, scale=0.7]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, sloped, below]{3cm}
|
|
|
|
(-3,0) -- node[midway, sloped, above]{2cm}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\draw (0, 0) rectangle ++(-3, -3);
|
|
|
|
\draw (-3, 0) rectangle ++(-2, 2);
|
|
|
|
\draw (0, 0) -- (2, 3) -- (-1, 5) -- (-3, 2) -- cycle;
|
|
|
|
\end{tikzpicture}
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=30, scale=0.7, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, below, sloped]{\large 36cm}
|
|
|
|
(-3,0) -- node[midway, above, sloped]{\large 77cm}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\draw (0, 0) rectangle ++(-3, -3);
|
|
|
|
\draw (-3, 0) rectangle ++(-2, 2);
|
|
|
|
\draw (0, 0) -- (2, 3) -- (-1, 5) -- (-3, 2) -- cycle;
|
|
|
|
\end{tikzpicture}
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=180, scale=0.7, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, above, sloped, rotate=180]{\large 48m}
|
|
|
|
(-3,0) -- node[midway, above, sloped]{\large 55m}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\draw (0, 0) rectangle ++(-3, -3);
|
|
|
|
\draw (-3, 0) rectangle ++(-2, 2);
|
|
|
|
\draw (0, 0) -- (2, 3) -- (-1, 5) -- (-3, 2) -- cycle;
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{enumerate}
|
|
|
|
\end{multicols}
|
|
|
|
|
|
|
|
\begin{multicols}{4}
|
|
|
|
\begin{enumerate}
|
|
|
|
\setcounter{enumi}{3}
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=50, scale=0.7, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, sloped, below]{\large 7cm}
|
|
|
|
(-3,0) -- node[midway, sloped, above]{\large 24cm}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=40, scale=0.7, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, below, sloped]{\large 1,6cm}
|
|
|
|
(-3,0) -- node[midway, above, sloped]{\large 63cm}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=100, scale=0.7, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, above, sloped, rotate=180]{\large 6.5m}
|
|
|
|
(-3,0) -- node[midway, above, sloped]{\large 72m}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
\item
|
|
|
|
\begin{tikzpicture}[baseline=(a.north west), rotate=0, scale=0.7, transform shape]
|
|
|
|
\draw[fill=blue!20]
|
|
|
|
(0,0) -- node[ midway, above, sloped, rotate=180]{\large 2m}
|
|
|
|
(-3,0) -- node[midway, above, sloped]{\large 1m}
|
|
|
|
(-3,2) --
|
|
|
|
cycle;
|
|
|
|
\draw (-3, 0) rectangle ++(0.2, 0.2);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{enumerate}
|
|
|
|
\end{multicols}
|
2022-05-03 07:48:00 +00:00
|
|
|
\end{exercise}
|
|
|
|
|