2021-2022/2nd/03_Fonctions_et_graphiques/1B_graph_fonction.tex

42 lines
1.7 KiB
TeX
Raw Normal View History

\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\author{Benjamin Bertrand}
\title{Fonctions et graphiques - Cours}
\date{Septembre 2021}
\pagestyle{empty}
\begin{document}
\maketitle
\section{Graphiques}
Quand on étudie le monde qui nous entoure, il est souvent intéressant et pertinent de chercher le lien entre l'évolution d'une grandeur et l'évolution du autre pour mettre en lumière leurs liens.
Une des façon de \textbf{représenter} ce lien est de faire un graphique. Voici quelques graphiques que nous avons tracé en classe.
\begin{center}
\begin{tabular}{p{0.3\linewidth}|p{0.3\linewidth}|p{0.3\linewidth}}
Poids des gobelets & Longueur du ballon & Distance à la caméra \\
\includegraphics[scale=0.1]{./fig/weight_stack_sol} &
\includegraphics[scale=0.1]{./fig/balloon_lenght_sol} &
\includegraphics[scale=0.1]{./fig/distance_camera_sol}
\\
Grandeurs reliées: \vspace{2cm}&
Grandeurs reliées: \vspace{2cm}&
Grandeurs reliées: \vspace{2cm}
\end{tabular}
\end{center}
\afaire{Trouver les deux grandeurs reliées dans chacun de ces graphiques}
Déterminer les liens entre les grandeurs est un enjeux important des sciences en général. Tracer un graphique est une première étape. On verra dans la suite qu'il l'on peut \textbf{modéliser} ce lien par un outil mathématique plus puissant: \textbf{une fonction}.
Une fonction modélisera \textbf{la transformation} d'une grandeur en une autre. Cela impose des contraintes.
\todo{Ajouter le graphique de la hauteur en fonction de la distance et le graphique de la distance en fonction de la hauteur et ajouter un paragraphe pour expliquer ce qui est modélisable par une fonction et ce qui ne l'est pas.}
\end{document}