Feat: Correction des exercices techniques de l'étape 2
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
ba7f6d90f6
commit
2e86919bc5
@ -64,13 +64,75 @@
|
||||
\item $[CD]$
|
||||
\item $[AD]$
|
||||
|
||||
\item $[DC]$
|
||||
\item $[CE]$
|
||||
\item $[EA]$
|
||||
\item $[EB]$
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
\end{exercise}
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\draw (-5, -3) grid (3, 6);
|
||||
\draw[->, very thick] (-5, 0) -- (3, 0);
|
||||
\draw[->, very thick] (0, -3) -- (0, 6);
|
||||
\draw (0, 0) node [below left] {0};
|
||||
\draw (1, 0) node [below left] {1};
|
||||
\draw (0, 1) node [below left] {1};
|
||||
|
||||
\draw (2, 6) node {x} node [below left] {$A$};
|
||||
\draw (-4, 0) node {x} node [below left] {$B$};
|
||||
\draw (0, 3) node {x} node [below left] {$C$};
|
||||
\draw (-2, -2) node {x} node [below left] {$D$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\begin{enumerate}
|
||||
\item Coordonnées du milieu du segment $[AB]$
|
||||
\[
|
||||
x = \frac{x_A + x_B}{2} = \frac{2 + (-4)}{2} = \frac{-2}{2} = -1 \qquad
|
||||
y = \frac{y_A + y_B}{2} = \frac{6 + 0}{2} = \frac{6}{2} = 3
|
||||
\]
|
||||
Les coordonnées du milieu sont $\left(-1; 3\right)$
|
||||
|
||||
\item Coordonnées du milieu du segment $[CD]$
|
||||
\[
|
||||
x = \frac{x_C + x_D}{2} = \frac{0 + (-2)}{2} = \frac{-2}{2} = -1 \qquad
|
||||
y = \frac{y_C + y_D}{2} = \frac{3 + (-2)}{2} = \frac{1}{2}
|
||||
\]
|
||||
Les coordonnées du milieu sont $\left(-1; \dfrac{1}{2}\right)$
|
||||
|
||||
\item Coordonnées du milieu du segment $[AD]$
|
||||
\[
|
||||
x = \frac{x_A + x_D}{2} = \frac{2 + (-2)}{2} = 0 \qquad
|
||||
y = \frac{y_A + y_D}{2} = \frac{6 + (-2)}{2} = \frac{4}{2} = 2
|
||||
\]
|
||||
Les coordonnées du milieu sont $\left(0; 2\right)$
|
||||
|
||||
\item Coordonnées du milieu du segment $[CE]$
|
||||
\[
|
||||
x = \frac{x_C + x_E}{2} = \frac{0 + 23}{2} = 11.5 \qquad
|
||||
y = \frac{y_C + y_E}{2} = \frac{3 + 95}{2} = 49
|
||||
\]
|
||||
Les coordonnées du milieu sont $\left(11.5; 49\right)$
|
||||
|
||||
|
||||
\item Coordonnées du milieu du segment $[EA]$
|
||||
\[
|
||||
x = \frac{x_A + x_E}{2} = \frac{2 + 23}{2} = 25 \qquad
|
||||
y = \frac{y_A + y_E}{2} = \frac{6 + 95}{2} = 50.5
|
||||
\]
|
||||
Les coordonnées du milieu sont $\left(25; 50.5\right)$
|
||||
|
||||
\item Coordonnées du milieu du segment $[EB]$
|
||||
\[
|
||||
x = \frac{x_B + x_E}{2} = \frac{-4 + 23}{2} = 9.5 \qquad
|
||||
y = \frac{y_B + y_E}{2} = \frac{0 + 95}{2} = 47.5
|
||||
\]
|
||||
Les coordonnées du milieu sont $\left(9.5; 47.5 \right)$
|
||||
\end{enumerate}
|
||||
\end{solution}
|
||||
|
||||
\begin{exercise}[subtitle={Exercice technique}, step={1}, origin={dMeedC}, topics={Géométrie repérée}, tags={Coordonnées, milieu}]
|
||||
On considère les points $E(1; -1)$, $F(5; 3)$, $C(3; 1)$ et $H(1; 3)$.
|
||||
\begin{enumerate}
|
||||
@ -81,6 +143,55 @@
|
||||
\end{enumerate}
|
||||
\end{exercise}
|
||||
|
||||
\begin{solution}
|
||||
\begin{enumerate}
|
||||
\item ~
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\draw (0, -2) grid (6, 4);
|
||||
\draw[->, very thick] (0, 0) -- (6, 0);
|
||||
\draw[->, very thick] (0, -2) -- (0, 4);
|
||||
\draw (0, 0) node [below left] {0};
|
||||
\draw (1, 0) node [below left] {1};
|
||||
\draw (0, 1) node [below left] {1};
|
||||
|
||||
\draw (1, -1) node {x} node [below left] {$E$};
|
||||
\draw (5, 3) node {x} node [below left] {$F$};
|
||||
\draw (3, 1) node {x} node [below left] {$C$};
|
||||
\draw (1, 3) node {x} node [below left] {$H$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\item \textbf{On sait que} $E(1; -1)$, $F(5; 3)$ et que $C(3; 1)$
|
||||
|
||||
\textbf{Or} le milieu du segment $[EF]$ se calcule de la manière suivante
|
||||
\[
|
||||
x = \frac{x_E + x_F}{2} = \frac{1 + 5}{2} = 3 \qquad
|
||||
y = \frac{y_E + y_F}{2} = \frac{-1 + 3}{2} = 1
|
||||
\]
|
||||
\textbf{Donc} $C$ est bien le milieu du segment $[EF]$.
|
||||
\item On note $(x_G; y_G)$ les coordonnées du point $G$.
|
||||
|
||||
\textbf{On sait que} $C$ est le milieu de $HG$
|
||||
|
||||
\textbf{Or} d'après la formule du milieu
|
||||
\begin{align*}
|
||||
x_C = \frac{x_H + x_G}{2} &\qquad y_C = \frac{y_H + y_G}{2} \\
|
||||
3 = \frac{1 + x_G}{2} & \qquad 1 = \frac{3 + y_G}{2} \\
|
||||
6 = 1 + x_G & \qquad 2 = 3 + y_G \\
|
||||
5 = x_G & \qquad -1 = y_G \\
|
||||
\end{align*}
|
||||
\textbf{Donc} $G(5; -1)$
|
||||
\item On sait que $C$ est le milieu des diagonales de $EGFH$
|
||||
|
||||
Or un quadrilatère qui a ses diagonales qui se coupent en leur milieu est un parallélogramme.
|
||||
|
||||
Donc $EGFH$ est un parallélogramme.
|
||||
|
||||
|
||||
\textit{Remarque:} On voit que c'est aussi un carré mais il faudrait encore du travail pour démontrer que s'en est un.
|
||||
\end{enumerate}
|
||||
\end{solution}
|
||||
|
||||
|
||||
% ---- étape 2
|
||||
\begin{exercise}[subtitle={Distance sur une droite}, step={2}, origin={dMeedC}, topics={Géométrie repérée}, tags={Coordonnées, distance}]
|
||||
|
Binary file not shown.
@ -35,17 +35,10 @@ Ordre des étapes à respécter
|
||||
\begin{center}
|
||||
\Ovalbox{
|
||||
\begin{tikzpicture}
|
||||
\tikzstyle{every state}=[
|
||||
draw = black,
|
||||
thick,
|
||||
fill = white,
|
||||
minimum size = 4mm
|
||||
]
|
||||
|
||||
\node[step] (E3) {3};
|
||||
\node[step] (E1) [above left of=E3] {1};
|
||||
\node[step] (E2) [above right of=E3] {2};
|
||||
\node[step] (E4) [right of=E2] {4};
|
||||
\node (E3) {3};
|
||||
\node (E1) [above left of=E3] {1};
|
||||
\node (E2) [above right of=E3] {2};
|
||||
\node (E4) [right of=E2] {4};
|
||||
|
||||
\path[->] (E1) edge (E3);
|
||||
\path[->] (E2) edge (E3);
|
||||
|
BIN
2nd/10_Geometrie_reperee/solutions.pdf
Normal file
BIN
2nd/10_Geometrie_reperee/solutions.pdf
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user